Managing performance vs. accuracy trade-offs with loop perforation

Stelios Sidiroglou, Sasa Misailovic, H. Hoffmann, M. Rinard
{"title":"Managing performance vs. accuracy trade-offs with loop perforation","authors":"Stelios Sidiroglou, Sasa Misailovic, H. Hoffmann, M. Rinard","doi":"10.1145/2025113.2025133","DOIUrl":null,"url":null,"abstract":"Many modern computations (such as video and audio encoders, Monte Carlo simulations, and machine learning algorithms) are designed to trade off accuracy in return for increased performance. To date, such computations typically use ad-hoc, domain-specific techniques developed specifically for the computation at hand. Loop perforation provides a general technique to trade accuracy for performance by transforming loops to execute a subset of their iterations. A criticality testing phase filters out critical loops (whose perforation produces unacceptable behavior) to identify tunable loops (whose perforation produces more efficient and still acceptably accurate computations). A perforation space exploration algorithm perforates combinations of tunable loops to find Pareto-optimal perforation policies. Our results indicate that, for a range of applications, this approach typically delivers performance increases of over a factor of two (and up to a factor of seven) while changing the result that the application produces by less than 10%.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"500","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 500

Abstract

Many modern computations (such as video and audio encoders, Monte Carlo simulations, and machine learning algorithms) are designed to trade off accuracy in return for increased performance. To date, such computations typically use ad-hoc, domain-specific techniques developed specifically for the computation at hand. Loop perforation provides a general technique to trade accuracy for performance by transforming loops to execute a subset of their iterations. A criticality testing phase filters out critical loops (whose perforation produces unacceptable behavior) to identify tunable loops (whose perforation produces more efficient and still acceptably accurate computations). A perforation space exploration algorithm perforates combinations of tunable loops to find Pareto-optimal perforation policies. Our results indicate that, for a range of applications, this approach typically delivers performance increases of over a factor of two (and up to a factor of seven) while changing the result that the application produces by less than 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过循环穿孔管理性能与精度之间的权衡
许多现代计算(如视频和音频编码器、蒙特卡罗模拟和机器学习算法)的设计都是为了牺牲精度以换取更高的性能。迄今为止,此类计算通常使用专门为手头的计算开发的特定于领域的临时技术。循环穿孔提供了一种通用技术,通过转换循环来执行其迭代的子集,从而以准确性换取性能。临界测试阶段过滤掉临界循环(其穿孔产生不可接受的行为),以识别可调循环(其穿孔产生更高效且仍可接受的精确计算)。穿孔空间探索算法通过可调回路的穿孔组合来寻找帕累托最优穿孔策略。我们的结果表明,对于一系列应用程序,这种方法通常会将性能提高两倍以上(最高可达七倍),而对应用程序产生的结果的改变不到10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semistructured merge: rethinking merge in revision control systems The 4th international workshop on social software engineering (SSE'11) Don't touch my code!: examining the effects of ownership on software quality SCORE: a scalable concolic testing tool for reliable embedded software Modeling the HTML DOM and browser API in static analysis of JavaScript web applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1