A Fast Privacy-Preserving Multi-keyword Search Scheme on Cloud Data

Ce Yang, Weiming Zhang, Jun Xu, Jiajia Xu, Nenghai Yu
{"title":"A Fast Privacy-Preserving Multi-keyword Search Scheme on Cloud Data","authors":"Ce Yang, Weiming Zhang, Jun Xu, Jiajia Xu, Nenghai Yu","doi":"10.1109/CSC.2012.23","DOIUrl":null,"url":null,"abstract":"Nowadays, more and more people outsource their data to cloud servers for great flexibility and economic savings. Due to considerations on security, private data is usually protected by encryption before sending to cloud. How to utilize data efficiently while preserving user's privacy is a new challenge. In this paper, we focus on a efficient multi-keyword search scheme meeting a strict privacy requirement. First, we make a short review of two existing schemes supporting multi-keyword search, the kNN-based MRSE scheme and scheme based on bloom filter. Based on the kNN-based scheme, we propose an improved scheme. Our scheme adopt a product of three sparse matrix pairs instead of the original dense matrix pair to encrypt index, and thus get a significant improvement in efficiency. Then, we combine our improved scheme with bloom filter, and thus gain the ability for index updating. Simulation Experiments show proposed scheme indeed introduces low overhead on computation and storage.","PeriodicalId":183800,"journal":{"name":"2012 International Conference on Cloud and Service Computing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cloud and Service Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSC.2012.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Nowadays, more and more people outsource their data to cloud servers for great flexibility and economic savings. Due to considerations on security, private data is usually protected by encryption before sending to cloud. How to utilize data efficiently while preserving user's privacy is a new challenge. In this paper, we focus on a efficient multi-keyword search scheme meeting a strict privacy requirement. First, we make a short review of two existing schemes supporting multi-keyword search, the kNN-based MRSE scheme and scheme based on bloom filter. Based on the kNN-based scheme, we propose an improved scheme. Our scheme adopt a product of three sparse matrix pairs instead of the original dense matrix pair to encrypt index, and thus get a significant improvement in efficiency. Then, we combine our improved scheme with bloom filter, and thus gain the ability for index updating. Simulation Experiments show proposed scheme indeed introduces low overhead on computation and storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于云数据的多关键字快速隐私保护搜索方案
如今,越来越多的人将他们的数据外包给云服务器,以获得极大的灵活性和经济效益。出于安全考虑,私有数据通常在发送到云之前进行加密保护。如何在保护用户隐私的同时有效地利用数据是一个新的挑战。本文重点研究了一种满足严格隐私要求的高效多关键字搜索方案。首先,我们简要回顾了现有的两种支持多关键字搜索的方案,即基于knn的MRSE方案和基于bloom滤波器的方案。在基于knn的方案基础上,提出了一种改进方案。我们的方案采用三个稀疏矩阵对的乘积代替原来的密集矩阵对来加密索引,从而显著提高了效率。然后,我们将改进方案与布隆过滤器相结合,从而获得索引更新的能力。仿真实验表明,该方案确实在计算和存储方面带来了较低的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Task Scheduling Algorithm in Hybrid Cloud Environment A Resource-Oriented Middleware Framework for Heterogeneous Internet of Things Cloud Storage-oriented Secure Information Gateway A Fast Privacy-Preserving Multi-keyword Search Scheme on Cloud Data Combined Cache Policy for Service Workflow Execution Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1