Solving software module clustering problem by evolutionary algorithms

Kata Praditwong
{"title":"Solving software module clustering problem by evolutionary algorithms","authors":"Kata Praditwong","doi":"10.1109/JCSSE.2011.5930112","DOIUrl":null,"url":null,"abstract":"Well organized software is easy to maintain but software modularization is complicated because of the number of modules. Automated software module clustering is transformed to a search-based problem. This paper describes the experiments on real-world problems of software module clustering by metaheuristic search methods such as genetic algorithms. This paper introduces the Grouping Genetic Algorithm (GGA) to the benchmarks. The fitness function measures a module granularity which is cohesion and coupling. Empirical result reports that the GGA outperforms a genetic algorithm with string representation.","PeriodicalId":287775,"journal":{"name":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2011.5930112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Well organized software is easy to maintain but software modularization is complicated because of the number of modules. Automated software module clustering is transformed to a search-based problem. This paper describes the experiments on real-world problems of software module clustering by metaheuristic search methods such as genetic algorithms. This paper introduces the Grouping Genetic Algorithm (GGA) to the benchmarks. The fitness function measures a module granularity which is cohesion and coupling. Empirical result reports that the GGA outperforms a genetic algorithm with string representation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用进化算法求解软件模块聚类问题
组织良好的软件易于维护,但由于模块数量多,软件模块化比较复杂。将自动化软件模块聚类问题转化为基于搜索的问题。本文介绍了基于遗传算法等元启发式搜索方法的软件模块聚类实验。本文将分组遗传算法(GGA)引入基准测试。适应度函数测量模块的粒度,即内聚和耦合。实证结果表明,GGA优于字符串表示的遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming state tables to Coloured Petri nets for automatic verification of internet protocols Clustering by attraction and distraction Event recognition from information-linkage based using phrase tree traversal Towards a complete project oriented risk management model: A refinement of PRORISK Solving software module clustering problem by evolutionary algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1