A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data

Thomas Henretty, M. Baskaran, J. Ezick, David Bruns-Smith, T. Simon
{"title":"A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data","authors":"Thomas Henretty, M. Baskaran, J. Ezick, David Bruns-Smith, T. Simon","doi":"10.1109/HPEC.2017.8091028","DOIUrl":null,"url":null,"abstract":"With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights into this spatiotemporal data. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights into this spatiotemporal data. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空数据张量分解的定量和定性分析
随着最近能够生成和存储大量GPS数据的系统的爆炸式增长,有机会开发新的技术来分析和获得对这些时空数据的有意义的见解。在本文中,我们研究了张量分解(一种高维数据分析技术)在地理参考数据集上的应用。为将时空数据拟合到张量模型中并分析结果提供了指导。我们发现张量分解为模式检测、聚类和异常检测的时空张量分解提供了见解,未来的研究是有必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1