{"title":"A fast genetic algorithm for the flexible job shop scheduling problem","authors":"Marcin Cwiek, J. Nalepa","doi":"10.1145/2598394.2602280","DOIUrl":null,"url":null,"abstract":"This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.