On Power-Performance Characterization of Concurrent Throughput Kernels

Nilanjan Goswami, Yuhai Li, Amer Qouneh, Chao Li, Tao Li
{"title":"On Power-Performance Characterization of Concurrent Throughput Kernels","authors":"Nilanjan Goswami, Yuhai Li, Amer Qouneh, Chao Li, Tao Li","doi":"10.1109/IISWC.2015.17","DOIUrl":null,"url":null,"abstract":"Growing deployment of power and energy efficient throughput accelerators (GPU) in data centers pushes the envelope of power-performance co-optimization capabilities of GPUs. Realization of exascale computing using accelerators demands further improvements in power efficiency. With hardwired kernel concurrency enablement in accelerators, inter- and intra-workload simultaneous kernels computation predicts increased throughput at lower energy budget. To improve Performance-per-Watt metric of the architectures, a systematic empirical study of real-world throughput workloads (with simultaneous kernel execution) is required. To this end, we propose a multi-kernel throughput workload generation framework that will facilitate aggressive energy and performance management of exascale data centers and will stimulate synergistic power-performance co-optimization of throughput architectures.","PeriodicalId":142698,"journal":{"name":"2015 IEEE International Symposium on Workload Characterization","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growing deployment of power and energy efficient throughput accelerators (GPU) in data centers pushes the envelope of power-performance co-optimization capabilities of GPUs. Realization of exascale computing using accelerators demands further improvements in power efficiency. With hardwired kernel concurrency enablement in accelerators, inter- and intra-workload simultaneous kernels computation predicts increased throughput at lower energy budget. To improve Performance-per-Watt metric of the architectures, a systematic empirical study of real-world throughput workloads (with simultaneous kernel execution) is required. To this end, we propose a multi-kernel throughput workload generation framework that will facilitate aggressive energy and performance management of exascale data centers and will stimulate synergistic power-performance co-optimization of throughput architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并发吞吐量内核的功率性能表征
数据中心中不断增长的功率和能效吞吐量加速器(GPU)部署推动了GPU的功率-性能协同优化功能的极限。使用加速器实现百亿亿次计算需要进一步提高功率效率。通过在加速器中支持硬连线的内核并发性,工作负载间和工作负载内的并发内核计算可以在较低的能量预算下提高吞吐量。为了改进体系结构的每瓦特性能指标,需要对实际吞吐量工作负载(同时执行内核)进行系统的实证研究。为此,我们提出了一个多内核吞吐量工作负载生成框架,该框架将促进百亿亿级数据中心的积极能源和性能管理,并将刺激吞吐量架构的协同功率性能协同优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Computational GPU Design with GT-Pin On Power-Performance Characterization of Concurrent Throughput Kernels CRONO: A Benchmark Suite for Multithreaded Graph Algorithms Executing on Futuristic Multicores Exploring Parallel Programming Models for Heterogeneous Computing Systems Revealing Critical Loads and Hidden Data Locality in GPGPU Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1