TrajGuard

Zheyi Pan, J. Bao, Weinan Zhang, Yŏng-ik Yu, Yu Zheng
{"title":"TrajGuard","authors":"Zheyi Pan, J. Bao, Weinan Zhang, Yŏng-ik Yu, Yu Zheng","doi":"10.1145/3292500.3330685","DOIUrl":null,"url":null,"abstract":"Trajectory data has been widely used in many urban applications. Sharing trajectory data with effective supervision is a vital task, as it contains private information of moving objects. However, malicious data users can modify trajectories in various ways to avoid data distribution tracking by the hashing-based data signatures, e.g., MD5. Moreover, the existing trajectory data protection scheme can only protect trajectories from either spatial or temporal modifications. Finally, so far there is no authoritative third party for trajectory data sharing process, as trajectory data is too sensitive. To this end, we propose a novel trajectory copyright protection scheme, which can protect trajectory data from comprehensive types of data modifications/attacks. Three main techniques are employed to effectively guarantee the robustness and comprehensiveness of the proposed data sharing scheme: 1) the identity information is embedded distributively across a set of sub-trajectories partitioned based on the spatio-temporal regions; 2) the centroid distance of the sub-trajectories is served as a stable trajectory attribute to embed the information; and 3) the blockchain technique is used as a trusted third party to log all data transaction history for data distribution tracking in a decentralized manner. Extensive experiments were conducted based on two real-world trajectory datasets to demonstrate the effectiveness of our proposed scheme.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Trajectory data has been widely used in many urban applications. Sharing trajectory data with effective supervision is a vital task, as it contains private information of moving objects. However, malicious data users can modify trajectories in various ways to avoid data distribution tracking by the hashing-based data signatures, e.g., MD5. Moreover, the existing trajectory data protection scheme can only protect trajectories from either spatial or temporal modifications. Finally, so far there is no authoritative third party for trajectory data sharing process, as trajectory data is too sensitive. To this end, we propose a novel trajectory copyright protection scheme, which can protect trajectory data from comprehensive types of data modifications/attacks. Three main techniques are employed to effectively guarantee the robustness and comprehensiveness of the proposed data sharing scheme: 1) the identity information is embedded distributively across a set of sub-trajectories partitioned based on the spatio-temporal regions; 2) the centroid distance of the sub-trajectories is served as a stable trajectory attribute to embed the information; and 3) the blockchain technique is used as a trusted third party to log all data transaction history for data distribution tracking in a decentralized manner. Extensive experiments were conducted based on two real-world trajectory datasets to demonstrate the effectiveness of our proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrajGuard
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1