Tasks performed in the legal domain through Deep Learning: A bibliometric review (1987–2020)

A. Montelongo, J. Becker
{"title":"Tasks performed in the legal domain through Deep Learning: A bibliometric review (1987–2020)","authors":"A. Montelongo, J. Becker","doi":"10.1109/ICDMW51313.2020.00113","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) has become the state-of-the-art method for Natural Language Processing (NLP). During the last 5 years DL became the primary Artificial Intelligence (AI) method in the legal domain. In this work we provide a systematic bibliometric review of the publications that have utilized DL as the primary methodology. In particular we analyzed the performed objectives (performed tasks), the corpus utilized to train the models and promising areas of research. The sample includes a total of 137 works published between 1987 and 2020. This analysis starts with the first DL models (formerly Neural Networks) in the legal domain until the latest articles in the ongoing year. Our results show an increment of 300% on the total number of publications during the last 5 years, mainly on information extraction and classification tasks. Moreover, classification is the category with most publications with 39% of the total sample. Finally, we have identified that summarization and text generation as promising areas of research. These findings show that DL in the legal domain is currently in a growing stage, and hence it will be a promising topic of research in the coming years.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Learning (DL) has become the state-of-the-art method for Natural Language Processing (NLP). During the last 5 years DL became the primary Artificial Intelligence (AI) method in the legal domain. In this work we provide a systematic bibliometric review of the publications that have utilized DL as the primary methodology. In particular we analyzed the performed objectives (performed tasks), the corpus utilized to train the models and promising areas of research. The sample includes a total of 137 works published between 1987 and 2020. This analysis starts with the first DL models (formerly Neural Networks) in the legal domain until the latest articles in the ongoing year. Our results show an increment of 300% on the total number of publications during the last 5 years, mainly on information extraction and classification tasks. Moreover, classification is the category with most publications with 39% of the total sample. Finally, we have identified that summarization and text generation as promising areas of research. These findings show that DL in the legal domain is currently in a growing stage, and hence it will be a promising topic of research in the coming years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习在法律领域执行的任务:文献计量学回顾(1987-2020)
深度学习(DL)已经成为自然语言处理(NLP)最先进的方法。在过去的五年中,深度学习成为法律领域主要的人工智能(AI)方法。在这项工作中,我们对利用深度学习作为主要方法的出版物进行了系统的文献计量学回顾。我们特别分析了执行的目标(执行的任务)、用于训练模型的语料库和有前途的研究领域。样本包括1987年至2020年间出版的137部作品。这个分析从法律领域的第一个深度学习模型(以前的神经网络)开始,直到今年的最新文章。我们的结果表明,在过去的5年中,出版物总数增加了300%,主要是在信息提取和分类任务上。此外,分类是出版物最多的类别,占总样本的39%。最后,我们确定摘要和文本生成是有前途的研究领域。这些发现表明,法律领域的深度学习目前正处于发展阶段,因此它将是未来几年研究的一个有前途的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1