Hybrid actuator design for a gait augmentation wearable

F. Wan, Zheng Wang, Brooke Franchuk, Xinyao Hu, Zhenglong Sun, Chaoyang Song
{"title":"Hybrid actuator design for a gait augmentation wearable","authors":"F. Wan, Zheng Wang, Brooke Franchuk, Xinyao Hu, Zhenglong Sun, Chaoyang Song","doi":"10.1109/ROBIO.2017.8324761","DOIUrl":null,"url":null,"abstract":"We describe a fluidic actuator design that replaces the sealed chamber of a hydraulic cylinder using a soft actuator to provide compliant linear compression with a large force (>100 N) at a low operation pressure (<50 kPa) for lower-limb wearable. The external shells constrain the deformation of the soft actuator under fluidic pressurization. This enables us to use latex party balloons as a quick and cheap alternative for initial design investigation. We found that the forces exerted by the soft material deformation are well-captured by the rigid shells, removing the necessity of explicitly describing the mechanics of the soft material deformation and its interaction with the rigid structure. One can use the classical Force, Pressure and Area formula factored with an efficiency parameter to characterize the actuator performance. Furthermore, we proposed an engineering design of the hybrid actuator using a customized soft actuator placed inside a single shell cavity with an open end for compression force. Our results show that the proposed design can generate a very high force within a short stroke distance. At a low input pressure of 50 kPa, the exerted block force is approaching only about 3% less than the classical equation predicted. The actuator is fitted to a new gait augmentation design for correcting knee alignment, which is usually challenging for actuators made from the purely soft material.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe a fluidic actuator design that replaces the sealed chamber of a hydraulic cylinder using a soft actuator to provide compliant linear compression with a large force (>100 N) at a low operation pressure (<50 kPa) for lower-limb wearable. The external shells constrain the deformation of the soft actuator under fluidic pressurization. This enables us to use latex party balloons as a quick and cheap alternative for initial design investigation. We found that the forces exerted by the soft material deformation are well-captured by the rigid shells, removing the necessity of explicitly describing the mechanics of the soft material deformation and its interaction with the rigid structure. One can use the classical Force, Pressure and Area formula factored with an efficiency parameter to characterize the actuator performance. Furthermore, we proposed an engineering design of the hybrid actuator using a customized soft actuator placed inside a single shell cavity with an open end for compression force. Our results show that the proposed design can generate a very high force within a short stroke distance. At a low input pressure of 50 kPa, the exerted block force is approaching only about 3% less than the classical equation predicted. The actuator is fitted to a new gait augmentation design for correcting knee alignment, which is usually challenging for actuators made from the purely soft material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种步态增强可穿戴设备的混合驱动器设计
我们描述了一种流体执行器设计,它使用软执行器取代液压缸的密封腔,在低操作压力(<50 kPa)下提供大力(>100 N)的柔性线性压缩,适用于下肢可穿戴设备。在流体增压作用下,壳体约束软执行器的变形。这使我们能够使用乳胶派对气球作为初始设计调查的快速和廉价的替代方案。我们发现,软材料变形所施加的力被刚性壳体很好地捕获,从而消除了明确描述软材料变形及其与刚性结构相互作用的力学的必要性。可以使用经典的力、压力和面积公式与效率参数因子来表征执行器的性能。在此基础上,提出了一种混合动力执行器的工程化设计方案,将定制的软执行器置于单壳腔内,端部打开以承受压缩力。我们的结果表明,所提出的设计可以在短行程距离内产生非常高的力。在50kpa的低输入压力下,施加的阻挡力只比经典方程预测的小3%左右。驱动器安装在一种新的步态增强设计中,用于纠正膝关节对齐,这对于纯软材料制成的驱动器来说通常是具有挑战性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Respiratory simulator for robotic respiratory tract treatments Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network A smooth position-force controller for asbestos removal manipulator A robotized interior work process planning algorithm based on surface minimum coverage set Towards adaptive power consumption estimation for over-actuated unmanned vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1