Intrusion detection using clustering of network traffic flows

Matthew J. Bailey, Connor Collins, Matthew Sinda, Gongzhu Hu
{"title":"Intrusion detection using clustering of network traffic flows","authors":"Matthew J. Bailey, Connor Collins, Matthew Sinda, Gongzhu Hu","doi":"10.1109/SNPD.2017.8022786","DOIUrl":null,"url":null,"abstract":"This paper investigates the continued need for intrusion detection systems (IDS) in computer networks. It explores some of the ways that data mining techniques can be used to improve IDS, and looks at how others have implemented those techniques. It then highlights a method for developing an intrusion detection model using DBSCAN clustering and presents the results of the clustering algorithm as applied to a real-world data set. Finally, the paper concludes that clustering as an intrusion detection technique produces accurate results, but that special considerations must be made both with regard to outliers and the type of traffic flowing across the network.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates the continued need for intrusion detection systems (IDS) in computer networks. It explores some of the ways that data mining techniques can be used to improve IDS, and looks at how others have implemented those techniques. It then highlights a method for developing an intrusion detection model using DBSCAN clustering and presents the results of the clustering algorithm as applied to a real-world data set. Finally, the paper concludes that clustering as an intrusion detection technique produces accurate results, but that special considerations must be made both with regard to outliers and the type of traffic flowing across the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵检测利用网络流量的聚类
本文探讨了计算机网络对入侵检测系统(IDS)的持续需求。本文探讨了数据挖掘技术用于改进IDS的一些方法,并介绍了其他人是如何实现这些技术的。然后重点介绍了一种使用DBSCAN聚类开发入侵检测模型的方法,并介绍了应用于实际数据集的聚类算法的结果。最后,本文得出结论,聚类作为一种入侵检测技术可以产生准确的结果,但必须对异常值和网络流量类型进行特殊考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of localization strategy for island model genetic algorithm Relationship between the five factor model personality and learning effectiveness of teams in three information systems education courses Evaluating the work of experienced and inexperienced developers considering work difficulty in sotware development Intrusion detection using clustering of network traffic flows Intelligent integrated coking flue gas indices prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1