Non-spherical particle size and shape estimation using machine learning

Chi Young Moon, C. Edwards, Alka Panda, G. Byun, K. Lowe
{"title":"Non-spherical particle size and shape estimation using machine learning","authors":"Chi Young Moon, C. Edwards, Alka Panda, G. Byun, K. Lowe","doi":"10.1109/RAPID49481.2020.9195671","DOIUrl":null,"url":null,"abstract":"A real time measurement of particles being ingested by gas turbines would prove useful for accurately monitoring engine health and ensuring safe operations. However, typical optical methods assume spherical particles, which most ingested particles are not. We present a novel application of machine learning models that takes scattering and extinction observations as inputs and estimates non-spherical particle shape (via aspect ratio) and size. The overall method of multiple classification and regression layers, as well as the results from three test cases using simulated inputs are presented.","PeriodicalId":220244,"journal":{"name":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID49481.2020.9195671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A real time measurement of particles being ingested by gas turbines would prove useful for accurately monitoring engine health and ensuring safe operations. However, typical optical methods assume spherical particles, which most ingested particles are not. We present a novel application of machine learning models that takes scattering and extinction observations as inputs and estimates non-spherical particle shape (via aspect ratio) and size. The overall method of multiple classification and regression layers, as well as the results from three test cases using simulated inputs are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非球形颗粒的大小和形状估计使用机器学习
对燃气轮机吸入的颗粒进行实时测量将有助于准确监测发动机的健康状况并确保安全运行。然而,典型的光学方法假设粒子是球形的,而大多数摄取的粒子不是球形的。我们提出了一种机器学习模型的新应用,该模型将散射和消光观测作为输入,并估计非球形颗粒的形状(通过纵横比)和大小。给出了多分类和回归层的总体方法,以及使用模拟输入的三个测试用例的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Dual-Frequency Coherent Noise Ladar Universal Biosensor for Multiple Biomarker Detection for Medical Applications Non-Electrical Topside (NET) Optical Fiber helps Mitigate Boundary Interactions AI Powered THz Testing Technology for Ensuring Hardware Cybersecurity Far-Field Thermal Emission from Optical Antennas on an Epsilon-Near-Zero Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1