A Preliminary Investigation of MLOps Practices in GitHub

Fabio Calefato, F. Lanubile, L. Quaranta
{"title":"A Preliminary Investigation of MLOps Practices in GitHub","authors":"Fabio Calefato, F. Lanubile, L. Quaranta","doi":"10.1145/3544902.3546636","DOIUrl":null,"url":null,"abstract":"Background. The rapid and growing popularity of machine learning (ML) applications has led to an increasing interest in MLOps, that is, the practice of continuous integration and deployment (CI/CD) of ML-enabled systems. Aims. Since changes may affect not only the code but also the ML model parameters and the data themselves, the automation of traditional CI/CD needs to be extended to manage model retraining in production. Method. In this paper, we present an initial investigation of the MLOps practices implemented in a set of ML-enabled systems retrieved from GitHub, focusing on GitHub Actions and CML, two solutions to automate the development workflow. Results. Our preliminary results suggest that the adoption of MLOps workflows in open-source GitHub projects is currently rather limited. Conclusions. Issues are also identified, which can guide future research work.","PeriodicalId":220679,"journal":{"name":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544902.3546636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Background. The rapid and growing popularity of machine learning (ML) applications has led to an increasing interest in MLOps, that is, the practice of continuous integration and deployment (CI/CD) of ML-enabled systems. Aims. Since changes may affect not only the code but also the ML model parameters and the data themselves, the automation of traditional CI/CD needs to be extended to manage model retraining in production. Method. In this paper, we present an initial investigation of the MLOps practices implemented in a set of ML-enabled systems retrieved from GitHub, focusing on GitHub Actions and CML, two solutions to automate the development workflow. Results. Our preliminary results suggest that the adoption of MLOps workflows in open-source GitHub projects is currently rather limited. Conclusions. Issues are also identified, which can guide future research work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GitHub中MLOps实践的初步调查
背景。机器学习(ML)应用程序的快速和日益普及导致对MLOps的兴趣日益增加,即支持ML的系统的持续集成和部署(CI/CD)的实践。目标由于更改不仅会影响代码,还会影响ML模型参数和数据本身,因此需要扩展传统CI/CD的自动化,以管理生产中的模型再培训。方法。在本文中,我们对从GitHub检索的一组支持ml的系统中实现的MLOps实践进行了初步调查,重点关注GitHub Actions和CML,这两种自动化开发工作流的解决方案。结果。我们的初步结果表明,在开源GitHub项目中采用MLOps工作流目前相当有限。结论。指出了存在的问题,对今后的研究工作具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Relationship between Community and Design Smells in Open-Source Software Projects: An Empirical Study A Preliminary Investigation of MLOps Practices in GitHub PG-VulNet: Detect Supply Chain Vulnerabilities in IoT Devices using Pseudo-code and Graphs On the Relationship Between Story Points and Development Effort in Agile Open-Source Software DevOps Practitioners’ Perceptions of the Low-code Trend
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1