Implementing a network intrusion detection system using semi-supervised support vector machine and random forest

Sandeep Shah, Pramita Sree Muhuri, Xiaohong Yuan, K. Roy, Prosenjit Chatterjee
{"title":"Implementing a network intrusion detection system using semi-supervised support vector machine and random forest","authors":"Sandeep Shah, Pramita Sree Muhuri, Xiaohong Yuan, K. Roy, Prosenjit Chatterjee","doi":"10.1145/3409334.3452073","DOIUrl":null,"url":null,"abstract":"Network security is an important aspect for any organization to keep their information systems secure. A Network Intrusion Detection System (NIDS) is an aid to secure the network by detecting abnormal or malicious traffic. In this paper, we applied a Semi-supervised machine learning approach to design a NIDS. We implemented semi-supervised Support Vector Machine (SVM) and semi-supervised Random Forest (RF) classifiers to classify the NSL-KDD dataset. We have classified the dataset in both binary and multiclass. We have also implemented a Genetic Algorithm (GA) approach to select the optimal features from the original features set. Results show that the random forest algorithm produces a better result than SVM using semi-supervised learning method. Also, the results show that applying the GA in SVM produces a better result than without using GA, and so does using GA in Semi-supervised Random Forest.","PeriodicalId":148741,"journal":{"name":"Proceedings of the 2021 ACM Southeast Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Southeast Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409334.3452073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Network security is an important aspect for any organization to keep their information systems secure. A Network Intrusion Detection System (NIDS) is an aid to secure the network by detecting abnormal or malicious traffic. In this paper, we applied a Semi-supervised machine learning approach to design a NIDS. We implemented semi-supervised Support Vector Machine (SVM) and semi-supervised Random Forest (RF) classifiers to classify the NSL-KDD dataset. We have classified the dataset in both binary and multiclass. We have also implemented a Genetic Algorithm (GA) approach to select the optimal features from the original features set. Results show that the random forest algorithm produces a better result than SVM using semi-supervised learning method. Also, the results show that applying the GA in SVM produces a better result than without using GA, and so does using GA in Semi-supervised Random Forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用半监督支持向量机和随机森林实现了一个网络入侵检测系统
网络安全是任何组织保证其信息系统安全的一个重要方面。网络入侵检测系统(NIDS)通过检测异常或恶意流量来保护网络安全。在本文中,我们应用半监督机器学习方法来设计NIDS。我们实现了半监督支持向量机(SVM)和半监督随机森林(RF)分类器对NSL-KDD数据集进行分类。我们将数据集分为二元类和多类。我们还实现了一种遗传算法(GA)方法从原始特征集中选择最优特征。结果表明,随机森林算法比使用半监督学习方法的支持向量机算法效果更好。结果表明,在支持向量机中应用遗传算法比不使用遗传算法效果更好,在半监督随机森林中使用遗传算法效果也更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of back-translation: a transfer learning approach to identify ambiguous software requirements A survey of wireless network simulation and/or emulation software for use in higher education Implementing a network intrusion detection system using semi-supervised support vector machine and random forest Performance evaluation of a widely used implementation of the MQTT protocol with large payloads in normal operation and under a DoS attack Benefits of combining dimensional attention and working memory for partially observable reinforcement learning problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1