Detection of SMS mobile malware

Seungyong Yoon, Jeongnyeo Kim, Hyunsook Cho
{"title":"Detection of SMS mobile malware","authors":"Seungyong Yoon, Jeongnyeo Kim, Hyunsook Cho","doi":"10.1109/ELINFOCOM.2014.6914392","DOIUrl":null,"url":null,"abstract":"This paper relates to mobile malware detection for prevention against financial charge caused by the malicious behavior using SMS. In this paper, we propose the method that conducts malicious behavior monitoring and various analysis techniques to detect the attack. This method includes malware installation check, SMS sending and receiving analysis, and signature-based pattern matching. Therefore, we can effectively respond against SMS mobile malware attacks.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper relates to mobile malware detection for prevention against financial charge caused by the malicious behavior using SMS. In this paper, we propose the method that conducts malicious behavior monitoring and various analysis techniques to detect the attack. This method includes malware installation check, SMS sending and receiving analysis, and signature-based pattern matching. Therefore, we can effectively respond against SMS mobile malware attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测短信手机恶意软件
针对利用短信恶意行为造成的金融收费问题,研究了手机恶意软件检测技术。在本文中,我们提出了进行恶意行为监控的方法和各种分析技术来检测攻击。该方法包括恶意软件安装检查、短信收发分析和基于签名的模式匹配。因此,我们可以有效地应对手机短信恶意软件的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection and decoding of photogrammetric coded targets Human movement detection using home network information and events on smartphones Multi-stage FIR filter design for portable digital spectrum analyzers A pose adaptive eye detection method using 3D face information Learning of social skills for Human-Robot Interaction by hierarchical HMM and interaction dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1