CLIPTexture: Text-Driven Texture Synthesis

Yiren Song
{"title":"CLIPTexture: Text-Driven Texture Synthesis","authors":"Yiren Song","doi":"10.1145/3503161.3548146","DOIUrl":null,"url":null,"abstract":"Can artificial intelligence create textures with artistic value according to human language control? Existing texture synthesis methods require example texture input. However, in many practical situations, users don't have satisfying textures but tell designers about their needs through simple sketches and verbal descriptions. This paper proposes a novel texture synthesis framework based on the CLIP, which models the texture synthesis problem as an optimization process and realizes text-driven texture synthesis by minimizing the distance between the input image and the text prompt in latent space. Our method performs zero-shot image manipulation successfully even between unseen domains. We implement texture synthesis using two different optimization methods, the TextureNet and Diffvg, demonstrating the generality of CLIPTexture. Extensive experiments confirmed the robust and superior manipulation performance of our methods compared to the existing baselines.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Can artificial intelligence create textures with artistic value according to human language control? Existing texture synthesis methods require example texture input. However, in many practical situations, users don't have satisfying textures but tell designers about their needs through simple sketches and verbal descriptions. This paper proposes a novel texture synthesis framework based on the CLIP, which models the texture synthesis problem as an optimization process and realizes text-driven texture synthesis by minimizing the distance between the input image and the text prompt in latent space. Our method performs zero-shot image manipulation successfully even between unseen domains. We implement texture synthesis using two different optimization methods, the TextureNet and Diffvg, demonstrating the generality of CLIPTexture. Extensive experiments confirmed the robust and superior manipulation performance of our methods compared to the existing baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLIPTexture:文本驱动的纹理合成
人工智能能否根据人类的语言控制创造出具有艺术价值的纹理?现有的纹理合成方法需要输入样本纹理。然而,在许多实际情况下,用户并没有令人满意的纹理,而是通过简单的草图和语言描述来告诉设计师他们的需求。本文提出了一种基于CLIP的纹理合成框架,该框架将纹理合成问题建模为一个优化过程,通过最小化潜在空间中输入图像与文本提示之间的距离来实现文本驱动的纹理合成。我们的方法即使在不可见的域之间也能成功地进行零镜头图像处理。我们使用TextureNet和Diffvg两种不同的优化方法实现纹理合成,展示了CLIPTexture的通用性。大量的实验证实了我们的方法与现有基线相比的鲁棒性和优越的操作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1