K-DBSCAN: an efficient density-based clustering algorithm supports parallel computing

Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao
{"title":"K-DBSCAN: an efficient density-based clustering algorithm supports parallel computing","authors":"Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao","doi":"10.1504/IJSPM.2018.094740","DOIUrl":null,"url":null,"abstract":"DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.094740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-DBSCAN:一种高效的基于密度的聚类算法,支持并行计算
DBSCAN是最具代表性的基于密度的聚类算法,在许多领域得到了广泛的应用。然而,DBSCAN的运行时间在许多实际应用程序中是不可接受的。为了提高聚类算法的性能,本文提出了一种新的基于二维密度的聚类算法K-DBSCAN,该算法通过简化的k-均值划分过程和可达分区索引成功地降低了聚类过程的计算复杂度,并通过分治法实现了并行计算。实验表明,与传统的DBSCAN算法相比,K-DBSCAN算法在基于空间密度的大规模聚类中具有显著的精度、效率和适用性。K- dbscan的时间复杂度为O(N2/KC),其中K为数据分区数,C为物理计算核数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1