Systematic power reduction and performance analysis of mismatch limited ADC designs

P. Scholtens, D. Smola, M. Vertregt
{"title":"Systematic power reduction and performance analysis of mismatch limited ADC designs","authors":"P. Scholtens, D. Smola, M. Vertregt","doi":"10.1145/1077603.1077622","DOIUrl":null,"url":null,"abstract":"This paper focuses on several methods to save power consumption in mismatch limited ADC designs, like flash and folding architectures. Migrating existing designs to a next submicron technology helps to reduce the power consumption significantly. It is shown that decreasing bandwidth and sample rate creates a more than linear reduction of the power consumption. Both of these methods are addressed in this paper. Also the balance between power consumption of the analog and digital circuitry is examined. An existing 6-bit 1.6GS/s ADC in 0.18/spl mu/m CMOS is transferred to a 0.12/spl mu/m technology. The sampling rate is reduced to 260MS/s, the measured ERBW to 124MHz while running at only 32mW. As the bandwidth is downscaled 5/spl times/, the power consumption is reduced by 10/spl times/, which results in an improved conversion efficiency. As the design topology is unaltered, the implemented design sets a reference for evaluation of any low-power technique.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper focuses on several methods to save power consumption in mismatch limited ADC designs, like flash and folding architectures. Migrating existing designs to a next submicron technology helps to reduce the power consumption significantly. It is shown that decreasing bandwidth and sample rate creates a more than linear reduction of the power consumption. Both of these methods are addressed in this paper. Also the balance between power consumption of the analog and digital circuitry is examined. An existing 6-bit 1.6GS/s ADC in 0.18/spl mu/m CMOS is transferred to a 0.12/spl mu/m technology. The sampling rate is reduced to 260MS/s, the measured ERBW to 124MHz while running at only 32mW. As the bandwidth is downscaled 5/spl times/, the power consumption is reduced by 10/spl times/, which results in an improved conversion efficiency. As the design topology is unaltered, the implemented design sets a reference for evaluation of any low-power technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统的功率降低和失配限制ADC设计的性能分析
本文重点介绍了几种在限制失配的ADC设计中节省功耗的方法,如闪存和折叠架构。将现有设计迁移到下一个亚微米技术有助于显着降低功耗。结果表明,降低带宽和采样率可以使功耗降低超过线性。本文讨论了这两种方法。同时对模拟电路和数字电路的功耗进行了平衡分析。现有的0.18/spl mu/m CMOS的6位1.6GS/s ADC被转换为0.12/spl mu/m技术。采样率降至260MS/s,测量的ERBW降至124MHz,而运行功率仅为32mW。由于带宽减小了5/spl倍,功耗降低了10/spl倍,从而提高了转换效率。由于设计拓扑不变,因此实现的设计为评估任何低功耗技术提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing sensor movement planning for energy efficiency Power-optimal repeater insertion considering V/sub dd/ and V/sub th/ as design freedoms An efficient (SPST) and its applications on MPEG-4 AVC/H.264 transform coding design A 9.5mW 4GHz WCDMA frequency synthesizer in 0.13/spl mu/m CMOS Linear programming for sizing, V/sub th/ and V/sub dd/ assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1