Research on Malicious URL Detection Technology Based on BERT Model

Wei-hwa Chang, Fei Du, Yijing Wang
{"title":"Research on Malicious URL Detection Technology Based on BERT Model","authors":"Wei-hwa Chang, Fei Du, Yijing Wang","doi":"10.1109/icicn52636.2021.9673860","DOIUrl":null,"url":null,"abstract":"In network security, as malicious URLs increase and change, their detection has gradually become more important. The existing malicious URL detection methods lack the description of location and context semantics. This paper proposes a malicious URL based on the BERT model. The URL detection method first uses the preprocessing method to solve the problem of a large number of random characters forming words in the URL, uses special symbols as a separator to segment the URL, and then trains the BERT model to extract the short string characteristics of the URL and classify it. The experimental results show that the method’s accuracy is 98.30%, the recall rate is 95.21%, and the F1 value is 94.33%.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9673860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In network security, as malicious URLs increase and change, their detection has gradually become more important. The existing malicious URL detection methods lack the description of location and context semantics. This paper proposes a malicious URL based on the BERT model. The URL detection method first uses the preprocessing method to solve the problem of a large number of random characters forming words in the URL, uses special symbols as a separator to segment the URL, and then trains the BERT model to extract the short string characteristics of the URL and classify it. The experimental results show that the method’s accuracy is 98.30%, the recall rate is 95.21%, and the F1 value is 94.33%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BERT模型的恶意URL检测技术研究
在网络安全中,随着恶意url的增加和变化,其检测也逐渐变得更加重要。现有的恶意URL检测方法缺乏对位置和上下文语义的描述。本文提出了一种基于BERT模型的恶意URL。URL检测方法首先使用预处理方法解决URL中大量随机字符构成单词的问题,使用特殊符号作为分隔符对URL进行分割,然后训练BERT模型提取URL的短串特征并进行分类。实验结果表明,该方法的准确率为98.30%,召回率为95.21%,F1值为94.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Single Observation Station Target Tracking Based on UKF Algorithm Deep Reinforcement Learning Based Autonomous Exploration under Uncertainty with Hybrid Network on Graph A Wireless Resource Management and Virtualization Method for Integrated Satellite-Terrestrial Network Smartphone Haptic Applications for Visually Impaired Users Recursive Compressed Sensing of Doubly-selective Sky-Wave Channel in Shortwave OFDM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1