Fast learning algorithms for multi-layered feedforward neural network

M. Liang, Shi-xi Wang, Youqing Luo
{"title":"Fast learning algorithms for multi-layered feedforward neural network","authors":"M. Liang, Shi-xi Wang, Youqing Luo","doi":"10.1109/NAECON.1994.332959","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of fast learning algorithm for multi-layered feedforward neural network (MLFNN) is discussed. A new fast backpropagation (FB-P) learning algorithm is proposed, By the analysis of FB-P learning algorithm, a modified FB-P (MFB-P) learning algorithm is presented. Simulations are run with the problem of XOR for B-P, FB-P and MFB-P, and the corresponding results indicate that MFB-P or FB-P converges much more quickly than B-P and MFB-P has much better generalization than FB-P or B-P.<<ETX>>","PeriodicalId":281754,"journal":{"name":"Proceedings of National Aerospace and Electronics Conference (NAECON'94)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of National Aerospace and Electronics Conference (NAECON'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1994.332959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, the problem of fast learning algorithm for multi-layered feedforward neural network (MLFNN) is discussed. A new fast backpropagation (FB-P) learning algorithm is proposed, By the analysis of FB-P learning algorithm, a modified FB-P (MFB-P) learning algorithm is presented. Simulations are run with the problem of XOR for B-P, FB-P and MFB-P, and the corresponding results indicate that MFB-P or FB-P converges much more quickly than B-P and MFB-P has much better generalization than FB-P or B-P.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层前馈神经网络的快速学习算法
讨论了多层前馈神经网络(MLFNN)的快速学习算法问题。提出了一种新的快速反向传播(FB-P)学习算法,通过对FB-P学习算法的分析,提出了一种改进的FB-P (MFB-P)学习算法。针对B-P、FB-P和MFB-P的异或问题进行了仿真,结果表明,MFB-P或FB-P的收敛速度比B-P快得多,MFB-P的泛化能力比FB-P或B-P.>好得多
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of difference method to dim point target detection in infrared images Computer emulator applications Automatic code generation for aerodynamic/math models Automated validation of operational flight programs (OFPs) and flight training simulators A CF-based algorithm for moving dot target detection in FLIR image sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1