Optimization of milling process parameters for energy saving and surface roughness

Q. Pham, Dang Xuan-Phuong, Tat-Khoa Doan, Le Xuan-Hung, Thi Lan-Huong Luong, Nguyen Trung-Thanh
{"title":"Optimization of milling process parameters for energy saving and surface roughness","authors":"Q. Pham, Dang Xuan-Phuong, Tat-Khoa Doan, Le Xuan-Hung, Thi Lan-Huong Luong, Nguyen Trung-Thanh","doi":"10.25073/tcsj.70.3.3","DOIUrl":null,"url":null,"abstract":"Improving the technical parameters of the machining process is an effective solution to save manufacturing costs. The purpose of this work is to decrease energy consumption (EC) and average surface roughness(ASR) for the milling process of AISI H13 steel. The spindle speed (S), depth of cut (a), and feed rate (f) were the processing inputs. The milling runs were performed using the experimental plan generated by the Box-Behnken method approach. The relationships between inputs and outputs were established using the response surface models (RSM). The desirability approach (DA) was used to observe the optimal values. The results showed that the reductions of EC and ASR are approximately 33.75% and 40.58%, respectively, as compared to the initial parameter setting. In addition, a hybrid approach using RSM and DA can be considered as a powerful solution to model the milling process and obtain a reliable optimal solution.","PeriodicalId":129747,"journal":{"name":"Transport and Communication Science Journal","volume":"64 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Communication Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/tcsj.70.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the technical parameters of the machining process is an effective solution to save manufacturing costs. The purpose of this work is to decrease energy consumption (EC) and average surface roughness(ASR) for the milling process of AISI H13 steel. The spindle speed (S), depth of cut (a), and feed rate (f) were the processing inputs. The milling runs were performed using the experimental plan generated by the Box-Behnken method approach. The relationships between inputs and outputs were established using the response surface models (RSM). The desirability approach (DA) was used to observe the optimal values. The results showed that the reductions of EC and ASR are approximately 33.75% and 40.58%, respectively, as compared to the initial parameter setting. In addition, a hybrid approach using RSM and DA can be considered as a powerful solution to model the milling process and obtain a reliable optimal solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铣削工艺参数的节能优化和表面粗糙度优化
改进加工工艺参数是节约制造成本的有效解决方案。本工作的目的是降低AISI H13钢铣削过程的能耗和平均表面粗糙度。主轴转速(S)、切削深度(a)和进给速度(f)是加工输入。采用Box-Behnken方法生成的实验计划进行铣削。利用响应面模型(RSM)建立了输入和输出之间的关系。采用可取性法(DA)观察最优值。结果表明,与初始参数设置相比,EC和ASR分别降低了约33.75%和40.58%。此外,利用RSM和数据分析的混合方法可以被认为是铣削过程建模和获得可靠最优解的有力解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nghiên cứu thực nghiệm ứng xử dưới tải trọng nén của kết cấu tường bê tông đất Quy hoạch tối ưu vị trí trạm điện kéo trong hệ thống cung cấp điện đường sắt đô thị sử dụng thuật toán quy hoạch nguyên Cơ sở xác định số lượng đầu máy bảo dưỡng sửa chữa trong ngành đường sắt Đặc tính điều động tàu: một vài bổ sung cập nhật mới Mô hình hóa kết cấu bằng phương pháp mặt đáp ứng-một nghiên cứu áp dụng cho công trình ngầm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1