Hierarchical Clustering Algorithm for Binary Data Based on Cosine Similarity

Xiaonan Gao, Sen Wu
{"title":"Hierarchical Clustering Algorithm for Binary Data Based on Cosine Similarity","authors":"Xiaonan Gao, Sen Wu","doi":"10.1109/LISS.2018.8593222","DOIUrl":null,"url":null,"abstract":"Clustering algorithm for binary data is a challenging problem in data mining and machine learning fields. While some efforts have been made to deal with clustering binary data, they lack effective methods to balance clustering quality and efficiency. To this end, we propose a hierarchical clustering algorithm for binary data based on cosine similarity (HABOC) in this paper. Firstly, we assess similarity between data objects with binary attributes using Cosine Similarity (CS). Then, the Cosine Similarity of a Set (CSS) is defined to compute similarity of a set containing multiple objects. Based on CSS, we propose the Cosine Feature Vector of a Set (CFVS) and additivity of CFVS to compress data and merge two clusters directly. We also exploit hierarchical clustering method to implement clustering, in order to avoid the sensitivity to the order of data objects and algorithm parameters. Experimental results on several UCI datasets demonstrate that HABOC outperforms existing binary data clustering algorithms.","PeriodicalId":338998,"journal":{"name":"2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISS.2018.8593222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Clustering algorithm for binary data is a challenging problem in data mining and machine learning fields. While some efforts have been made to deal with clustering binary data, they lack effective methods to balance clustering quality and efficiency. To this end, we propose a hierarchical clustering algorithm for binary data based on cosine similarity (HABOC) in this paper. Firstly, we assess similarity between data objects with binary attributes using Cosine Similarity (CS). Then, the Cosine Similarity of a Set (CSS) is defined to compute similarity of a set containing multiple objects. Based on CSS, we propose the Cosine Feature Vector of a Set (CFVS) and additivity of CFVS to compress data and merge two clusters directly. We also exploit hierarchical clustering method to implement clustering, in order to avoid the sensitivity to the order of data objects and algorithm parameters. Experimental results on several UCI datasets demonstrate that HABOC outperforms existing binary data clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于余弦相似度的二值数据分层聚类算法
二进制数据的聚类算法是数据挖掘和机器学习领域的一个具有挑战性的问题。虽然在处理二进制数据聚类方面已经做了一些努力,但缺乏有效的方法来平衡聚类的质量和效率。为此,本文提出了一种基于余弦相似度(HABOC)的二值数据分层聚类算法。首先,我们使用余弦相似度(CS)来评估具有二元属性的数据对象之间的相似度。然后,定义了集的余弦相似度(cos Similarity of a Set, CSS)来计算包含多个对象的集的相似度。在CSS的基础上,我们提出了集的余弦特征向量(CFVS)和CFVS的可加性来直接压缩和合并两个聚类。为了避免对数据对象顺序和算法参数的敏感性,我们还利用层次聚类方法来实现聚类。在多个UCI数据集上的实验结果表明,HABOC算法优于现有的二进制数据聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concepts for Cargo Ground Handling of Unmanned Cargo Aircrafts and Their Influence on the Supply Chain Combine Contract Model for Two-level Supply Chain Considering Nash Bargaining Fairness Concerns and Sales Effort Blockchain Application for Rideshare Service A Closed-Loop Location-Inventory Problem Considering Returns with Mixed Quality Defects in E-Commerce The Impact of Social Network: Understand Consumer’s Collaborative Purchase Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1