{"title":"Pearson Correlation Attribute Evaluation-based Feature Selection for Intrusion Detection System","authors":"Yuna Sugianela, T. Ahmad","doi":"10.1109/ICoSTA48221.2020.1570613717","DOIUrl":null,"url":null,"abstract":"IDS helps to overcome the network attack by taking appropriate preventive measures. The data mining method has good adaptability to new attack types; however, it consumes much time for high dimensional data. Therefore, the system needs a reduction of that high dimension. In this paper, we use a correlation approach of the attribute to evaluate those high dimensional data. To achieve a better environment, we propose a cut-off value of correlation to select some best features to use in the classification process. The best cut-off value in our experiment is 0.2 in RF classification that reaches 99.36% accuracy. The selection feature can reduce the time consumed in the running system.","PeriodicalId":375166,"journal":{"name":"2020 International Conference on Smart Technology and Applications (ICoSTA)","volume":"339 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technology and Applications (ICoSTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSTA48221.2020.1570613717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
IDS helps to overcome the network attack by taking appropriate preventive measures. The data mining method has good adaptability to new attack types; however, it consumes much time for high dimensional data. Therefore, the system needs a reduction of that high dimension. In this paper, we use a correlation approach of the attribute to evaluate those high dimensional data. To achieve a better environment, we propose a cut-off value of correlation to select some best features to use in the classification process. The best cut-off value in our experiment is 0.2 in RF classification that reaches 99.36% accuracy. The selection feature can reduce the time consumed in the running system.