Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah

M. K. Anam, Bunga Nanti Pikir, M. Firdaus
{"title":"Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah","authors":"M. K. Anam, Bunga Nanti Pikir, M. Firdaus","doi":"10.30812/matrik.v21i1.1092","DOIUrl":null,"url":null,"abstract":"Pemerintah Pekanbaru saat ini sudah menerapkan teknologi dalam sistem pemerintahan, penerapannya saat ini masih mendapat keluhan dari masyarakat seperti layanan publik command center yang hanya sebagian masyarakat mengetahuinya dan penerapan cctv yang ada di Alat Pemberi Isyarat Lalu Lintas (APILL) yang belum berfungsi dengan baik. Penerapan teknologi lainnya oleh Pemerintah Pekanbaru dapat kita lihat dari keberadaan portal-portal web situs resmi Pemerintah. Sedangkan untuk melihat beragam komentar netizen dari twitter. Twitter menjadi tempat untuk mendapatkan data yang diungkapkan masyarakat melalui tweets yang diposting ke timeline. Analisa sentimen dilakukan untuk melihat pendapat atau kecenderungan opini netizen terhadap pemerintah Pekanbaru yang mengandung sentimen positif, negatif, dan netral. Data yang digunakan adalah tweet dengan jumlah dataset sebanyak 150 tweets. Data tersebut kemudian di analisa agar menjadi informasi. Analisa dilakukan menggunakan metode data mining yaitu Naïve Bayes Classifier, K-Nearest Neighbor (KNN), dan Decision tree. Penggunaan ketiga pendekatan ini berupaya untuk mengkategorikan hasil komentar netizen terkait penggunaan teknologi yang telah melalui proses analisis sentimen dan membandingkan keakuratan ketiga cara tersebut. Hasil akurasi yang didapatkan cukup beragam yaitu dari metode Naïve Bayes akurasi 100%, metode KKN akurasi 98,25%, dan metode decision tree akurasi 62,28%.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i1.1092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Pemerintah Pekanbaru saat ini sudah menerapkan teknologi dalam sistem pemerintahan, penerapannya saat ini masih mendapat keluhan dari masyarakat seperti layanan publik command center yang hanya sebagian masyarakat mengetahuinya dan penerapan cctv yang ada di Alat Pemberi Isyarat Lalu Lintas (APILL) yang belum berfungsi dengan baik. Penerapan teknologi lainnya oleh Pemerintah Pekanbaru dapat kita lihat dari keberadaan portal-portal web situs resmi Pemerintah. Sedangkan untuk melihat beragam komentar netizen dari twitter. Twitter menjadi tempat untuk mendapatkan data yang diungkapkan masyarakat melalui tweets yang diposting ke timeline. Analisa sentimen dilakukan untuk melihat pendapat atau kecenderungan opini netizen terhadap pemerintah Pekanbaru yang mengandung sentimen positif, negatif, dan netral. Data yang digunakan adalah tweet dengan jumlah dataset sebanyak 150 tweets. Data tersebut kemudian di analisa agar menjadi informasi. Analisa dilakukan menggunakan metode data mining yaitu Naïve Bayes Classifier, K-Nearest Neighbor (KNN), dan Decision tree. Penggunaan ketiga pendekatan ini berupaya untuk mengkategorikan hasil komentar netizen terkait penggunaan teknologi yang telah melalui proses analisis sentimen dan membandingkan keakuratan ketiga cara tersebut. Hasil akurasi yang didapatkan cukup beragam yaitu dari metode Naïve Bayes akurasi 100%, metode KKN akurasi 98,25%, dan metode decision tree akurasi 62,28%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现任政府已经在政府系统中应用了这项技术,其应用目前仍受到一些社区的投诉,比如公共指挥中心(commission center)的公共服务中心(public service center)。我们可以从政府官方网站的门户网站上看到Pekanbaru政府的其他技术应用。同时查看twitter上各种各样的网友评论。Twitter成为人们通过张贴在时间轴上的Twitter来获取公开数据的地方。通过分析,我们可以看到网民对一个具有积极、消极和中立情绪的政府的看法或倾向。我们使用的数据是一条带有150条数据集的微博。分析这些数据以获得信息。该分析采用了数据挖掘方法,即Naive Bayes classier, K-Nearest neighbors和Decision tree。这三种方法的使用试图对通过情感分析过程对技术使用的相关评论结果进行分类,并比较这三种方法的准确性。它的准确性有很多不同之处,包括100%的Naive Bayes方法,98.25%的准确率,以及62.28%的树击率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1