Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm

Ni Gusti Ayu Dasriani, Sirojul Hadi, Moch Syahrir
{"title":"Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm","authors":"Ni Gusti Ayu Dasriani, Sirojul Hadi, Moch Syahrir","doi":"10.30812/matrik.v23i1.3581","DOIUrl":null,"url":null,"abstract":"Population growth is increasing every year. Population growth causes an increase in population density in a country. The largest population density is in urban areas. Fires in a city with a high population density will potentially cause greater damage. Material and non-material losses due to fire can be caused by not functioning maximally early warning systems, especially fire detection. In addition, other factors, such as system errors in detecting fires, can potentially cause fires. This research aims to build an intelligent system that can minimize building fire detection errors to reduce user material losses. The intelligent system can classify fire potential into four classifications, namely ”very dangerous,” ”dangerous,” ”alert,” and ”safe.” The method used in this research is Research and Development (R&D) with artificial intelligence using the Na¨ıve Bayes method, which has been integrated with the Internet of Things (IoT). This research shows that the Na¨ıve Bayes algorithm can be used to classify fire potential, proven by the overall system testing accuracy of 93.33% with an error of 6.77%.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v23i1.3581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Population growth is increasing every year. Population growth causes an increase in population density in a country. The largest population density is in urban areas. Fires in a city with a high population density will potentially cause greater damage. Material and non-material losses due to fire can be caused by not functioning maximally early warning systems, especially fire detection. In addition, other factors, such as system errors in detecting fires, can potentially cause fires. This research aims to build an intelligent system that can minimize building fire detection errors to reduce user material losses. The intelligent system can classify fire potential into four classifications, namely ”very dangerous,” ”dangerous,” ”alert,” and ”safe.” The method used in this research is Research and Development (R&D) with artificial intelligence using the Na¨ıve Bayes method, which has been integrated with the Internet of Things (IoT). This research shows that the Na¨ıve Bayes algorithm can be used to classify fire potential, proven by the overall system testing accuracy of 93.33% with an error of 6.77%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用 Naive Bayes 算法的基于物联网的建筑消防安全智能系统
人口增长每年都在增加。人口增长导致一个国家的人口密度增加。城市地区的人口密度最大。人口密度高的城市发生火灾可能会造成更大的损失。火灾造成的物质和非物质损失可能是由于预警系统(尤其是火灾探测系统)没有最大限度地发挥作用造成的。此外,系统在探测火灾时出现错误等其他因素也可能导致火灾。本研究旨在建立一个智能系统,最大限度地减少建筑火灾探测误差,从而降低用户的物质损失。该智能系统可将火灾隐患分为四个等级,即 "非常危险"、"危险"、"警戒 "和 "安全"。本研究采用的方法是使用 Naıve Bayes 方法进行人工智能研发(R&D),并与物联网(IoT)相结合。这项研究表明,Naıve Bayes 算法可用于火灾隐患分类,整个系统测试的准确率为 93.33%,误差为 6.77%,证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1