{"title":"Cut-through delivery in Trapeze: An exercise in low-latency messaging","authors":"K. Yocum, J. Chase, Andrew J. Gallatin, A. Lebeck","doi":"10.1109/HPDC.1997.626425","DOIUrl":null,"url":null,"abstract":"New network technology continues to improve both the latency and bandwidth of communication in computer clusters. The fastest high-speed networks approach or exceed the I/O bus bandwidths of \"gigabit-ready\" hosts. These advances introduce new considerations for the design of network interfaces and messaging systems for low-latency communication. This paper investigates cut-through delivery, a technique for overlapping host I/O DMA transfers with network traversal. Cut-through delivery significantly reduces end-to-end latency of large messages, which are often critical for application performance. We have implemented cut-through delivery in Trapeze, a new messaging substrate for network memory and other distributed operating system services. Our current Trapeze prototype is capable of demand-fetching 8 K virtual memory pages in 200 /spl mu/s across a Myrinet cluster of DEC AlphaStations.","PeriodicalId":243171,"journal":{"name":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.1997.626425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
New network technology continues to improve both the latency and bandwidth of communication in computer clusters. The fastest high-speed networks approach or exceed the I/O bus bandwidths of "gigabit-ready" hosts. These advances introduce new considerations for the design of network interfaces and messaging systems for low-latency communication. This paper investigates cut-through delivery, a technique for overlapping host I/O DMA transfers with network traversal. Cut-through delivery significantly reduces end-to-end latency of large messages, which are often critical for application performance. We have implemented cut-through delivery in Trapeze, a new messaging substrate for network memory and other distributed operating system services. Our current Trapeze prototype is capable of demand-fetching 8 K virtual memory pages in 200 /spl mu/s across a Myrinet cluster of DEC AlphaStations.