Performance of k-NN classifier for emotion detection using EEG signals

Vaishnavi L. Kaundanya, A. Patil, A. Panat
{"title":"Performance of k-NN classifier for emotion detection using EEG signals","authors":"Vaishnavi L. Kaundanya, A. Patil, A. Panat","doi":"10.1109/ICCSP.2015.7322687","DOIUrl":null,"url":null,"abstract":"This paper describes the performance of k-NN classifier to classify the different emotions. The human brain is a superimposition of the diverse processes. This complex structure of brain is recognized through EEG signals. EEG signals indicate the changes in the state of brain. Electroencephalograph (EEG) measurements are commonly used in different research areas under the field of medical. Data acquisition is done for different emotions with the help of ADInsruments' power lab instrument. The real life EEG signals are collected with the help of Ground Truth Method. In this paper, proposed method consists of four steps, viz., acquisition of data, Pre-processing, Feature extraction and Classification. Subjects are stimulated for Sad and Happy emotions. Statistical features are then given to a k-NN classifier. The k Nearest Neighbor classifier gives different accuracy of classification for different combinations of training and testing dataset. The system has been tested on number of subjects to observe the performance of k-NN classifier.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper describes the performance of k-NN classifier to classify the different emotions. The human brain is a superimposition of the diverse processes. This complex structure of brain is recognized through EEG signals. EEG signals indicate the changes in the state of brain. Electroencephalograph (EEG) measurements are commonly used in different research areas under the field of medical. Data acquisition is done for different emotions with the help of ADInsruments' power lab instrument. The real life EEG signals are collected with the help of Ground Truth Method. In this paper, proposed method consists of four steps, viz., acquisition of data, Pre-processing, Feature extraction and Classification. Subjects are stimulated for Sad and Happy emotions. Statistical features are then given to a k-NN classifier. The k Nearest Neighbor classifier gives different accuracy of classification for different combinations of training and testing dataset. The system has been tested on number of subjects to observe the performance of k-NN classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电信号的k-NN分类器情绪检测性能研究
本文描述了k-NN分类器对不同情绪进行分类的性能。人类的大脑是多种过程的叠加。这种复杂的大脑结构是通过脑电图信号来识别的。脑电图信号反映了大脑状态的变化。脑电图(EEG)测量在医学领域的不同研究领域都有广泛的应用。利用adinstruments的功率实验室仪器对不同的情绪进行数据采集。利用地面真值法对现实生活中的脑电信号进行采集。本文提出的方法包括数据采集、预处理、特征提取和分类四个步骤。受试者被刺激产生悲伤和快乐的情绪。然后将统计特征交给k-NN分类器。k近邻分类器对于训练和测试数据集的不同组合给出了不同的分类精度。对该系统进行了大量的主题测试,以观察k-NN分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved scheduling algorithm using dynamic tree construction for wireless sensor networks Design of polyphase FIR filter using bypass feed direct multiplier Implementation of floating point fused basic arithmetic module using Verilog Comparison of conventional flip flops with pulse triggered generation using signal feed through technique A novel 2GHz highly efficiency improved class-E Power Amplifier for Base stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1