DriveFuzz

Seulbae Kim, Major Liu, J. Rhee, Yuseok Jeon, Yonghwi Kwon, C. Kim
{"title":"DriveFuzz","authors":"Seulbae Kim, Major Liu, J. Rhee, Yuseok Jeon, Yonghwi Kwon, C. Kim","doi":"10.1145/3548606.3560558","DOIUrl":null,"url":null,"abstract":"Autonomous driving has become real; semi-autonomous driving vehicles in an affordable price range are already on the streets, and major automotive vendors are actively developing full self-driving systems to deploy them in this decade. Before rolling the products out to the end-users, it is critical to test and ensure the safety of the autonomous driving systems, consisting of multiple layers intertwined in a complicated way. However, while safety-critical bugs may exist in any layer and even across layers, relatively little attention has been given to testing the entire driving system across all the layers. Prior work mainly focuses on white-box testing of individual layers and preventing attacks on each layer. In this paper, we aim at holistic testing of autonomous driving systems that have a whole stack of layers integrated in their entirety. Instead of looking into the individual layers, we focus on the vehicle states that the system continuously changes in the driving environment. This allows us to design DriveFuzz, a new systematic fuzzing framework that can uncover potential vulnerabilities regardless of their locations. DriveFuzz automatically generates and mutates driving scenarios based on diverse factors leveraging a high-fidelity driving simulator. We build novel driving test oracles based on the real-world traffic rules to detect safety-critical misbehaviors, and guide the fuzzer towards such misbehaviors through driving quality metrics referring to the physical states of the vehicle. DriveFuzz has discovered 30 new bugs in various layers of two autonomous driving systems (Autoware and CARLA Behavior Agent) and three additional bugs in the CARLA simulator. We further analyze the impact of these bugs and how an adversary may exploit them as security vulnerabilities to cause critical accidents in the real world.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Autonomous driving has become real; semi-autonomous driving vehicles in an affordable price range are already on the streets, and major automotive vendors are actively developing full self-driving systems to deploy them in this decade. Before rolling the products out to the end-users, it is critical to test and ensure the safety of the autonomous driving systems, consisting of multiple layers intertwined in a complicated way. However, while safety-critical bugs may exist in any layer and even across layers, relatively little attention has been given to testing the entire driving system across all the layers. Prior work mainly focuses on white-box testing of individual layers and preventing attacks on each layer. In this paper, we aim at holistic testing of autonomous driving systems that have a whole stack of layers integrated in their entirety. Instead of looking into the individual layers, we focus on the vehicle states that the system continuously changes in the driving environment. This allows us to design DriveFuzz, a new systematic fuzzing framework that can uncover potential vulnerabilities regardless of their locations. DriveFuzz automatically generates and mutates driving scenarios based on diverse factors leveraging a high-fidelity driving simulator. We build novel driving test oracles based on the real-world traffic rules to detect safety-critical misbehaviors, and guide the fuzzer towards such misbehaviors through driving quality metrics referring to the physical states of the vehicle. DriveFuzz has discovered 30 new bugs in various layers of two autonomous driving systems (Autoware and CARLA Behavior Agent) and three additional bugs in the CARLA simulator. We further analyze the impact of these bugs and how an adversary may exploit them as security vulnerabilities to cause critical accidents in the real world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DriveFuzz
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
P-Verifier: Understanding and Mitigating Security Risks in Cloud-based IoT Access Policies When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer Poster: MUSTARD - Adaptive Behavioral Analysis for Ransomware Detection Poster: Fingerprint-Face Friction Based Earable Authentication A Run a Day Won't Keep the Hacker Away: Inference Attacks on Endpoint Privacy Zones in Fitness Tracking Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1