Mario Porrmann, M. Purnaprajna, Christoph Puttmann
{"title":"Self-optimization of MPSoCs Targeting Resource Efficiency and Fault Tolerance","authors":"Mario Porrmann, M. Purnaprajna, Christoph Puttmann","doi":"10.1109/AHS.2009.52","DOIUrl":null,"url":null,"abstract":"A dynamically reconfigurable on-chip multiprocessor architecture is presented, which can be adapted to changing application demands and to faults detected at run-time. The scalable architecture comprises lightweight embedded RISC processors that are interconnected by a hierarchical network-on-chip (NoC). Reconfigurability is integrated into the processors as well as into the NoC with minimal area and performance overhead. Adaptability of the architecture relies on a self-optimizing reconfiguration of the MPSoC at run-time. The resource-efficiency of the proposed architecture is analyzed based on FPGA and ASIC prototypes.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A dynamically reconfigurable on-chip multiprocessor architecture is presented, which can be adapted to changing application demands and to faults detected at run-time. The scalable architecture comprises lightweight embedded RISC processors that are interconnected by a hierarchical network-on-chip (NoC). Reconfigurability is integrated into the processors as well as into the NoC with minimal area and performance overhead. Adaptability of the architecture relies on a self-optimizing reconfiguration of the MPSoC at run-time. The resource-efficiency of the proposed architecture is analyzed based on FPGA and ASIC prototypes.