Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick
{"title":"Learning a deep neural net policy for end-to-end control of autonomous vehicles","authors":"Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick","doi":"10.23919/ACC.2017.7963716","DOIUrl":null,"url":null,"abstract":"Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.