Learning a deep neural net policy for end-to-end control of autonomous vehicles

Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick
{"title":"Learning a deep neural net policy for end-to-end control of autonomous vehicles","authors":"Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang Liu, E. Kreuzer, J. Karl Hedrick","doi":"10.23919/ACC.2017.7963716","DOIUrl":null,"url":null,"abstract":"Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Deep neural networks are frequently used for computer vision, speech recognition and text processing. The reason is their ability to regress highly nonlinear functions. We present an end-to-end controller for steering autonomous vehicles based on a convolutional neural network (CNN). The deployed framework does not require explicit hand-engineered algorithms for lane detection, object detection or path planning. The trained neural net directly maps pixel data from a front-facing camera to steering commands and does not require any other sensors. We compare the controller performance with the steering behavior of a human driver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习一种用于自动驾驶车辆端到端控制的深度神经网络策略
深度神经网络经常用于计算机视觉、语音识别和文本处理。原因是它们能够回归高度非线性的函数。我们提出了一种基于卷积神经网络(CNN)的端到端自动驾驶汽车转向控制器。部署的框架不需要明确的手工设计算法来进行车道检测、对象检测或路径规划。经过训练的神经网络直接将来自前置摄像头的像素数据映射到转向命令,而不需要任何其他传感器。我们将控制器的性能与人类驾驶员的转向行为进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1