H. Jardón-Kojakhmetov, J. Scherpen, D. D. Puerto-Flores
{"title":"Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point","authors":"H. Jardón-Kojakhmetov, J. Scherpen, D. D. Puerto-Flores","doi":"10.23919/ACC.2017.7963319","DOIUrl":null,"url":null,"abstract":"Non-hyperbolic points of slow-fast systems (also known as singularly perturbed ordinary differential equations) are responsible for many interesting behavior such as relaxation oscillations, canards, mixed-mode oscillations, etc. Recently, the authors have proposed a control strategy to stabilize non-hyperbolic points of planar slow-fast systems. Such strategy is based on geometric desingularization, which is a well suited technique to analyze the dynamics of slow-fast systems near non-hyperbolic points. This technique transforms the singular perturbation problem to an equivalent regular perturbation problem. This papers treats the nonlinear adaptive stabilization problem of slow-fast systems. The novelty is that the point to be stabilized is non-hyperbolic. The controller is designed by combining geometric desingularization and Lyapunov based techniques. Through the action of the controller, we basically inject a normally hyperbolic behavior to the fast variable. Our results are exemplified on the van der Pol oscillator.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Non-hyperbolic points of slow-fast systems (also known as singularly perturbed ordinary differential equations) are responsible for many interesting behavior such as relaxation oscillations, canards, mixed-mode oscillations, etc. Recently, the authors have proposed a control strategy to stabilize non-hyperbolic points of planar slow-fast systems. Such strategy is based on geometric desingularization, which is a well suited technique to analyze the dynamics of slow-fast systems near non-hyperbolic points. This technique transforms the singular perturbation problem to an equivalent regular perturbation problem. This papers treats the nonlinear adaptive stabilization problem of slow-fast systems. The novelty is that the point to be stabilized is non-hyperbolic. The controller is designed by combining geometric desingularization and Lyapunov based techniques. Through the action of the controller, we basically inject a normally hyperbolic behavior to the fast variable. Our results are exemplified on the van der Pol oscillator.