Conceptual Design and Neutronics/Thermal-Hydraulic Coupling Optimization Analyses of Two Typical Helium Cooled Solid Breeder Blanket Modules for CFETR Phase II

Shijie Cui, Dalin Zhang, W. Tian, G. Su, S. Qiu
{"title":"Conceptual Design and Neutronics/Thermal-Hydraulic Coupling Optimization Analyses of Two Typical Helium Cooled Solid Breeder Blanket Modules for CFETR Phase II","authors":"Shijie Cui, Dalin Zhang, W. Tian, G. Su, S. Qiu","doi":"10.1115/ICONE26-81539","DOIUrl":null,"url":null,"abstract":"Chinese Fusion Engineering Test Reactor (CFETR) is a new test Tokamak device which is now being designed in China to make the transition from the International Thermonuclear Experimental Reactor (ITER) to the future Fusion Power Plant (FPP). Breeding blanket is the key component of fusion reactor which is mainly responsible for the tritium self-sufficiency and fusion energy conversion. In the past few years, three kinds of blanket conceptual design schemes have been proposed and tested in parallel for CFETR Phase I, in which the helium cooled solid breeder (HCSB) blanket concept is acknowledged as the most promising one. However, nowadays, the design phase of CFETR has gradually changed from I to II aiming for the future DEMO operation condition, the main parameters of which are quite different from the previous one. Therefore, it’s necessary to perform conceptual design and various analyses for the HCSB blanket under the new working condition. In this work, firstly, a new conceptual design scheme of HCSB blanket for Phase II is put forward. Then, the radial build arrangements, of the two typical blanket modules are optimized by using the NTCOC. This work can provide valuable references for further conceptual design and neutronics/thermal-hydraulic coupling analyses of the HCSB blanket for CFETR Phase II.","PeriodicalId":354697,"journal":{"name":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Chinese Fusion Engineering Test Reactor (CFETR) is a new test Tokamak device which is now being designed in China to make the transition from the International Thermonuclear Experimental Reactor (ITER) to the future Fusion Power Plant (FPP). Breeding blanket is the key component of fusion reactor which is mainly responsible for the tritium self-sufficiency and fusion energy conversion. In the past few years, three kinds of blanket conceptual design schemes have been proposed and tested in parallel for CFETR Phase I, in which the helium cooled solid breeder (HCSB) blanket concept is acknowledged as the most promising one. However, nowadays, the design phase of CFETR has gradually changed from I to II aiming for the future DEMO operation condition, the main parameters of which are quite different from the previous one. Therefore, it’s necessary to perform conceptual design and various analyses for the HCSB blanket under the new working condition. In this work, firstly, a new conceptual design scheme of HCSB blanket for Phase II is put forward. Then, the radial build arrangements, of the two typical blanket modules are optimized by using the NTCOC. This work can provide valuable references for further conceptual design and neutronics/thermal-hydraulic coupling analyses of the HCSB blanket for CFETR Phase II.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFETR二期两种典型氦冷固体增殖堆包层模块概念设计及热工耦合优化分析
中国聚变工程试验反应堆(CFETR)是一个新的托卡马克试验装置,目前正在中国设计,以实现从国际热核实验反应堆(ITER)向未来聚变发电厂(FPP)的过渡。增殖包层是聚变反应堆的关键部件,主要负责氚的自给和聚变能的转换。近年来,CFETR第1期共提出了3种包层概念设计方案并进行了并行试验,其中氦冷固体增殖堆包层设计方案被认为是最有前途的方案。然而,目前CFETR的设计阶段已经逐渐从I阶段转变为II阶段,目标是未来的DEMO运行条件,其主要参数与之前有很大的不同。因此,有必要对新工况下的HCSB毯进行概念设计和各项分析。本文首先提出了二期工程HCSB毯层的新概念设计方案。然后,利用NTCOC对两种典型包层模块的径向构建布局进行优化。该工作可为CFETR二期HCSB包层的进一步概念设计和热工耦合分析提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the Neutronics of a Molten Salt Fast Reactor Using DYN3D-MG for the Investigation of the Application of Frozen Wall Technology Conceptual Design and Neutronics/Thermal-Hydraulic Coupling Optimization Analyses of Two Typical Helium Cooled Solid Breeder Blanket Modules for CFETR Phase II The Backfit Rule’s Compliance Exception A Framework and Model for Assessing the Design Point Performance, Off-Design Point Performance, Control, Economics and Risks of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants AFCEN RCC-F: A New Standard for the Fire Protection Design of New Built Light Water Nuclear Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1