The HiBench benchmark suite: Characterization of the MapReduce-based data analysis

Shengsheng Huang, Jie Huang, J. Dai, T. Xie, Bo Huang
{"title":"The HiBench benchmark suite: Characterization of the MapReduce-based data analysis","authors":"Shengsheng Huang, Jie Huang, J. Dai, T. Xie, Bo Huang","doi":"10.1109/ICDEW.2010.5452747","DOIUrl":null,"url":null,"abstract":"The MapReduce model is becoming prominent for the large-scale data analysis in the cloud. In this paper, we present the benchmarking, evaluation and characterization of Hadoop, an open-source implementation of MapReduce. We first introduce HiBench, a new benchmark suite for Hadoop. It consists of a set of Hadoop programs, including both synthetic micro-benchmarks and real-world Hadoop applications. We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"748","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 748

Abstract

The MapReduce model is becoming prominent for the large-scale data analysis in the cloud. In this paper, we present the benchmarking, evaluation and characterization of Hadoop, an open-source implementation of MapReduce. We first introduce HiBench, a new benchmark suite for Hadoop. It consists of a set of Hadoop programs, including both synthetic micro-benchmarks and real-world Hadoop applications. We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HiBench基准测试套件:基于mapreduce的数据分析的特征
MapReduce模型在云中的大规模数据分析中变得越来越突出。在本文中,我们提出了对Hadoop的基准测试,评估和表征,Hadoop是MapReduce的开源实现。我们首先介绍HiBench,一个新的Hadoop基准测试套件。它由一组Hadoop程序组成,包括合成微基准测试和真实的Hadoop应用程序。然后,我们使用HiBench来评估和描述Hadoop框架,包括速度(即作业运行时间)、吞吐量(即每分钟完成的任务数量)、HDFS带宽、系统资源(例如CPU、内存和I/O)利用率和数据访问模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast algorithms for time series mining Ontology alignment argumentation with mutual dependency between arguments and mappings A first step towards integration independence Towards enterprise software as a service in the cloud U-DBSCAN : A density-based clustering algorithm for uncertain objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1