{"title":"MEMS Piezoresistive Cantilever Fabrication And Characterization","authors":"Miranji Katta, R. Sandanalakshmi","doi":"10.1109/GCAT52182.2021.9587807","DOIUrl":null,"url":null,"abstract":"A microcantilever array chip made with Micro-Electro-Mechanical System (MEMS) technology has been demonstrated to develop as a biosensor device. This chip includes four gold-covered and embedded polysilicon wire with microfabricated Si beams. The polysilicon coat serves as a piezoresistor, and changes in resistance due to compressive and tensile forces indicate microcantilever deformation. The relationship between initial resistance and microcantilever deflection demonstrates that this device has a detection range of 0-56kΩ. The investigation of the microcantilever response to biotin immobilisation revealed that resistance change caused by Biotin absorption can be observed and reaches a degree of amount independence at Biotin concentrations higher than 80pg/ml. The results suggested that this device could be developed as a piezoresistive-based microcantilever biosensor.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"408 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A microcantilever array chip made with Micro-Electro-Mechanical System (MEMS) technology has been demonstrated to develop as a biosensor device. This chip includes four gold-covered and embedded polysilicon wire with microfabricated Si beams. The polysilicon coat serves as a piezoresistor, and changes in resistance due to compressive and tensile forces indicate microcantilever deformation. The relationship between initial resistance and microcantilever deflection demonstrates that this device has a detection range of 0-56kΩ. The investigation of the microcantilever response to biotin immobilisation revealed that resistance change caused by Biotin absorption can be observed and reaches a degree of amount independence at Biotin concentrations higher than 80pg/ml. The results suggested that this device could be developed as a piezoresistive-based microcantilever biosensor.