Programming agent-based demographic models with cross-state and message-exchange dependencies: A study with speculative PDES and automatic load-sharing
Alessandro Pellegrini, F. Quaglia, Cristina Montañola-Sales, Josep Casanovas-García
{"title":"Programming agent-based demographic models with cross-state and message-exchange dependencies: A study with speculative PDES and automatic load-sharing","authors":"Alessandro Pellegrini, F. Quaglia, Cristina Montañola-Sales, Josep Casanovas-García","doi":"10.1109/WSC.2016.7822156","DOIUrl":null,"url":null,"abstract":"Agent-based modeling and simulation is a versatile and promising methodology to capture complex interactions among entities and their surrounding environment. A great advantage is its ability to model phenomena at a macro scale by exploiting simpler descriptions at a micro level. It has been proven effective in many fields, and it is rapidly becoming a de-facto standard in the study of population dynamics. In this article we study programmability and performance aspects of the last-generation ROOT-Sim speculative PDES environment for multi/many-core shared-memory architectures. ROOT-Sim transparently offers a programming model where interactions can be based on both explicit message passing and in-place state accesses. We introduce programming guidelines for systematic exploitation of these facilities in agent-based simulations, and we study the effects on performance of an innovative load-sharing policy targeting these types of dependencies. An experimental assessment with synthetic and real-world applications is provided, to assess the validity of our proposal.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"378 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Agent-based modeling and simulation is a versatile and promising methodology to capture complex interactions among entities and their surrounding environment. A great advantage is its ability to model phenomena at a macro scale by exploiting simpler descriptions at a micro level. It has been proven effective in many fields, and it is rapidly becoming a de-facto standard in the study of population dynamics. In this article we study programmability and performance aspects of the last-generation ROOT-Sim speculative PDES environment for multi/many-core shared-memory architectures. ROOT-Sim transparently offers a programming model where interactions can be based on both explicit message passing and in-place state accesses. We introduce programming guidelines for systematic exploitation of these facilities in agent-based simulations, and we study the effects on performance of an innovative load-sharing policy targeting these types of dependencies. An experimental assessment with synthetic and real-world applications is provided, to assess the validity of our proposal.