Zijian Guo, H. Ye, Wei Dong, Xiang Yan, Yindong Ji
{"title":"A Fault Detection Method for Railway Point Machine Operations Based On Stacked Autoencoders","authors":"Zijian Guo, H. Ye, Wei Dong, Xiang Yan, Yindong Ji","doi":"10.23919/IConAC.2018.8749098","DOIUrl":null,"url":null,"abstract":"Fault detection of point machine operations is discussed in this paper, which is critical for ensuring the safety of a running train. A fault detection method is proposed based on stacked autoencoders (SAE), which can be easily trained and has great expressive power. The method only requires normal samples to train the SAE model, and integrates feature extraction and fault detection into one step. The proposed method is evaluated by using the historical field data collected from a real high-speed railway. Experimental results show the effectiveness and merits of the SAE based detection method.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Fault detection of point machine operations is discussed in this paper, which is critical for ensuring the safety of a running train. A fault detection method is proposed based on stacked autoencoders (SAE), which can be easily trained and has great expressive power. The method only requires normal samples to train the SAE model, and integrates feature extraction and fault detection into one step. The proposed method is evaluated by using the historical field data collected from a real high-speed railway. Experimental results show the effectiveness and merits of the SAE based detection method.