ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations

S. Lei, I. Mathews, J. Camus, S. Bensalem, M. Djouadi, A. Shen, G. Duan, R. Enright
{"title":"ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations","authors":"S. Lei, I. Mathews, J. Camus, S. Bensalem, M. Djouadi, A. Shen, G. Duan, R. Enright","doi":"10.1109/ITHERM.2016.7517659","DOIUrl":null,"url":null,"abstract":"In the paper, we aim to solve the thermal problems appearing in integrated silicon photonics by using high thermal conductivity Aluminium Nitride (ALN) as a thermal spreading layer located around the ridge of a hybrid III-V laser on silicon in comparison to the existing encapsulation material benzocyclobutene (BCB). Here, to facilitate the design of reliable hybrid semiconductor lasers, we first develop and implement a multiphysics electro-thermo-mechanical model within a finite element environment COMSOL. A phenomenological model of laser operation is used to numerically capture all the thermal and electrical characteristics of the lasers. In terms of the hybrid devices, the simulated thermal resistance agrees well with our device measurements presented in Part 1 of this work. We also demonstrate that the use of the ALN heat spreader can significantly reduce the thermal resistance. Moreover, a linear elastic model is employed for a mechanical analysis of the entire laser structure. The maximum allowable stress is estimated using the Christensen criterion. We find that the process-dependent residual stress dictates the device stress field. In the current design, the BCB encapsulation layer is at risk of failure around the InP waveguide. For AlN spreaders, lower film processing temperatures are key to reduce the stress in the deposited film. We further perform a parametric study on Tref to determine the maximum allowable deposition temperature of AlN/BCB. The simulations suggest that Tref should not exceed 59 °C and 69 °C for ALN and BCB respectively to avoid mechanical failure in the devices.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper, we aim to solve the thermal problems appearing in integrated silicon photonics by using high thermal conductivity Aluminium Nitride (ALN) as a thermal spreading layer located around the ridge of a hybrid III-V laser on silicon in comparison to the existing encapsulation material benzocyclobutene (BCB). Here, to facilitate the design of reliable hybrid semiconductor lasers, we first develop and implement a multiphysics electro-thermo-mechanical model within a finite element environment COMSOL. A phenomenological model of laser operation is used to numerically capture all the thermal and electrical characteristics of the lasers. In terms of the hybrid devices, the simulated thermal resistance agrees well with our device measurements presented in Part 1 of this work. We also demonstrate that the use of the ALN heat spreader can significantly reduce the thermal resistance. Moreover, a linear elastic model is employed for a mechanical analysis of the entire laser structure. The maximum allowable stress is estimated using the Christensen criterion. We find that the process-dependent residual stress dictates the device stress field. In the current design, the BCB encapsulation layer is at risk of failure around the InP waveguide. For AlN spreaders, lower film processing temperatures are key to reduce the stress in the deposited film. We further perform a parametric study on Tref to determine the maximum allowable deposition temperature of AlN/BCB. The simulations suggest that Tref should not exceed 59 °C and 69 °C for ALN and BCB respectively to avoid mechanical failure in the devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ALN薄膜在III-V型光子器件中的散热性能。第2部分:模拟
在本文中,我们的目标是解决集成硅光子中出现的热问题,通过使用高导热的氮化铝(ALN)作为热扩散层,位于混合III-V激光在硅上的山脊周围,而不是现有的封装材料苯并环丁烯(BCB)。在这里,为了促进可靠的混合半导体激光器的设计,我们首先在COMSOL有限元环境中开发并实现了一个多物理场电-热-机械模型。激光操作的现象学模型用于数值捕捉激光器的所有热和电学特性。在混合器件方面,模拟的热阻与我们在本工作第1部分中提出的器件测量结果非常吻合。我们还证明了ALN散热器的使用可以显著降低热阻。此外,采用线弹性模型对整个激光结构进行了力学分析。最大允许应力是用克里斯滕森准则估计的。我们发现与工艺相关的残余应力决定了器件应力场。在目前的设计中,BCB封装层在InP波导周围存在失效的风险。对于氮化铝涂层,较低的薄膜加工温度是降低沉积薄膜应力的关键。我们进一步对Tref进行了参数化研究,以确定AlN/BCB的最大允许沉积温度。模拟结果表明,ALN和BCB的Tref应分别不超过59°C和69°C,以避免设备发生机械故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical model of graphene-enabled ultra-low power phase change memory ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations Experimental study of bubble dynamics in highly wetting dielectric liquid pool boiling through high-speed video Condensate mobility actuated by microsurface topography and wettability modifications Inverse approach to characterize die-attach thermal interface of light emitting diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1