Single edge based belief propagation algorithms for MIMO detection

Feichi Long, Tiejun Lv, Ruohan Cao, Hui Gao
{"title":"Single edge based belief propagation algorithms for MIMO detection","authors":"Feichi Long, Tiejun Lv, Ruohan Cao, Hui Gao","doi":"10.1109/SARNOF.2011.5876456","DOIUrl":null,"url":null,"abstract":"In this paper, two low-complexity belief propagation (BP) based detectors are proposed for multiple-input multiple-out (MIMO) system. The factor graph is leveraged to represent the MIMO channels, and based on which our algorithms are developed. Unlike the existing complicated standard BP detectors that consider all the edges when updating the messages, our algorithms only focus on single edge, which largely reduce computational complexity. In particular, we propose a novel Gaussian approximation with feedback information (GF) mechanism to enable the proposed single edge BP detector. In order to further improve the detection performance, we also propose to integrate the linear MIMO detector into the initial GF based single edge BP detector, where the pseudo priori (PP) information obtained from linear detector is judiciously exploited. Convergence and complexity analyses, along with the numerical simulations, verify that the proposed single edge BP detectors outperform the existing BP detectors in performance while with low complexity.","PeriodicalId":339596,"journal":{"name":"34th IEEE Sarnoff Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2011.5876456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, two low-complexity belief propagation (BP) based detectors are proposed for multiple-input multiple-out (MIMO) system. The factor graph is leveraged to represent the MIMO channels, and based on which our algorithms are developed. Unlike the existing complicated standard BP detectors that consider all the edges when updating the messages, our algorithms only focus on single edge, which largely reduce computational complexity. In particular, we propose a novel Gaussian approximation with feedback information (GF) mechanism to enable the proposed single edge BP detector. In order to further improve the detection performance, we also propose to integrate the linear MIMO detector into the initial GF based single edge BP detector, where the pseudo priori (PP) information obtained from linear detector is judiciously exploited. Convergence and complexity analyses, along with the numerical simulations, verify that the proposed single edge BP detectors outperform the existing BP detectors in performance while with low complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单边信念传播的MIMO检测算法
针对多输入多输出(MIMO)系统,提出了两种基于低复杂度信念传播(BP)的检测器。因子图被用来表示MIMO信道,并在此基础上开发了我们的算法。与现有复杂的标准BP检测器在更新消息时考虑所有边缘不同,我们的算法只关注单个边缘,大大降低了计算复杂度。特别地,我们提出了一种新的带有反馈信息(GF)机制的高斯近似来实现所提出的单边BP检测器。为了进一步提高检测性能,我们还提出将线性MIMO检测器集成到初始的基于GF的单边BP检测器中,合理利用线性检测器获得的伪先验(pseudo priori, PP)信息。收敛性和复杂性分析以及数值模拟验证了所提出的单边BP检测器在性能上优于现有的BP检测器,且具有较低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive multiresolution modulation for multimedia traffic in dynamic wireless environment mmWave mobile broadband (MMB): Unleashing the 3–300GHz spectrum Allocating bandwidth in the resilient packet ring networks by PI controller Single edge based belief propagation algorithms for MIMO detection Bit error rate analysis of digital communications signal demodulation using wavelet denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1