Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems

Lindsey Andrews, Justin R. Klotz, R. Kamalapurkar, W. Dixon
{"title":"Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems","authors":"Lindsey Andrews, Justin R. Klotz, R. Kamalapurkar, W. Dixon","doi":"10.1109/CDC.2014.7040185","DOIUrl":null,"url":null,"abstract":"Adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A reinforcement learning-based actor-critic framework is used to approximately solve the Hamilton-Jacobi-Bellman equation, wherein critic and actor neural networks (NN) are used for approximate learning of the optimal value function and control policy, while enforcing the optimality condition resulting from the hard terminal constraint. Concurrent learning-based update laws relax the restrictive persistence of excitation requirement. A Lyapunov-based stability analysis guarantees uniformly ultimately bounded convergence of the enacted control policy to the optimal control policy.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A reinforcement learning-based actor-critic framework is used to approximately solve the Hamilton-Jacobi-Bellman equation, wherein critic and actor neural networks (NN) are used for approximate learning of the optimal value function and control policy, while enforcing the optimality condition resulting from the hard terminal constraint. Concurrent learning-based update laws relax the restrictive persistence of excitation requirement. A Lyapunov-based stability analysis guarantees uniformly ultimately bounded convergence of the enacted control policy to the optimal control policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
终端约束有限视界最优控制问题的自适应动态规划
将自适应动态规划应用于具有不确定漂移动力学的控制仿射非线性系统,得到了一类具有硬终端约束的有限视界最优控制问题的近最优解。采用基于强化学习的行为者-批评者框架近似求解Hamilton-Jacobi-Bellman方程,其中批评者和行为者神经网络(NN)用于最优值函数和控制策略的近似学习,同时执行由硬终端约束产生的最优性条件。基于并行学习的更新律放宽了对激励持续性的限制。基于lyapunov的稳定性分析保证了所制定的控制策略最终一致有界收敛于最优控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary lectures and CSS Bode Lecture Robust synthesis for linear parameter varying systems using integral quadratic constraints Fast convergence of quantized consensus using Metropolis chains A distributed local Kalman consensus filter for traffic estimation Poisson's equation in nonlinear filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1