Fast convergence of quantized consensus using Metropolis chains

T. Başar, S. Etesami, Alexander Olshevsky
{"title":"Fast convergence of quantized consensus using Metropolis chains","authors":"T. Başar, S. Etesami, Alexander Olshevsky","doi":"10.1109/CDC.2014.7039566","DOIUrl":null,"url":null,"abstract":"We consider the quantized consensus problem on undirected connected graphs and study its expected convergence time to the set of consensus points. As compared with earlier results on the problem, we improve the convergence speed of the dynamics by a factor of n, where n is the number of agents involved in the dynamics. In particular, we show that when the edges of the network are activated based on a Poisson processes with Metropolis rates, the expected convergence time to the consensus set is at most O(n2 log n). This upper bound is better than all available results for randomized quantized consensus.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the quantized consensus problem on undirected connected graphs and study its expected convergence time to the set of consensus points. As compared with earlier results on the problem, we improve the convergence speed of the dynamics by a factor of n, where n is the number of agents involved in the dynamics. In particular, we show that when the edges of the network are activated based on a Poisson processes with Metropolis rates, the expected convergence time to the consensus set is at most O(n2 log n). This upper bound is better than all available results for randomized quantized consensus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Metropolis链的量化共识快速收敛
考虑无向连通图上的量化一致性问题,研究其对一致性点集合的期望收敛时间。与之前的结果相比,我们将动力学的收敛速度提高了n倍,其中n是动力学中涉及的代理的数量。特别地,我们证明了当基于Metropolis速率的泊松过程激活网络边缘时,到共识集的期望收敛时间最多为O(n2 log n),该上界优于所有随机量化共识的可用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary lectures and CSS Bode Lecture Robust synthesis for linear parameter varying systems using integral quadratic constraints Fast convergence of quantized consensus using Metropolis chains A distributed local Kalman consensus filter for traffic estimation Poisson's equation in nonlinear filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1