Multiple target tracking with symmetric measurement equations using unscented Kalman and particle filters

W. F. Leven, A. Lanterman
{"title":"Multiple target tracking with symmetric measurement equations using unscented Kalman and particle filters","authors":"W. F. Leven, A. Lanterman","doi":"10.1109/SSST.2004.1295647","DOIUrl":null,"url":null,"abstract":"The symmetric measurement equation approach to multiple target tracking is revisited using unscented Kalman and particle filters. The characteristics and performance of these filters are compared to the original symmetric measurement equation implementation relying upon an extended Kalman filter. Counter-intuitive results are presented and explained for two sets of symmetric measurement equations, including a previously unknown limitation of the unscented Kalman filter. The point is made that the performance of the SME approach is dependent on the interaction of the set of SME equations and the filter used.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The symmetric measurement equation approach to multiple target tracking is revisited using unscented Kalman and particle filters. The characteristics and performance of these filters are compared to the original symmetric measurement equation implementation relying upon an extended Kalman filter. Counter-intuitive results are presented and explained for two sets of symmetric measurement equations, including a previously unknown limitation of the unscented Kalman filter. The point is made that the performance of the SME approach is dependent on the interaction of the set of SME equations and the filter used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无气味卡尔曼和粒子滤波的对称测量方程多目标跟踪
利用无气味卡尔曼滤波和粒子滤波重新研究了多目标跟踪的对称测量方程方法。将这些滤波器的特性和性能与基于扩展卡尔曼滤波器的原始对称测量方程实现进行了比较。提出并解释了两组对称测量方程的反直觉结果,包括以前未知的无气味卡尔曼滤波器的限制。本文指出,SME方法的性能取决于SME方程集和所使用的滤波器的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter complexity analysis of hyper-spectral bands Performance analysis of UNIX user datagram protocol implementations On the complexity and accuracy of motion estimation using Lie operators Real time modeling and control of circulating fluidized bed Vehicle lateral control using a double integrator control strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1