{"title":"DeepGx","authors":"Joseph M. de Guia, M. Devaraj, C. Leung","doi":"10.1145/3341161.3343516","DOIUrl":null,"url":null,"abstract":"This paper aims to explore the problems associated in solving the classification of cancer in gene expression data using deep learning model. Our proposed solution for the cancer classification of ribonucleic acid sequencing (RNA-seq) extracted from the Pan-Cancer Atlas is to transform the 1-dimensional (1D) gene expression values into 2-dimensional (2D) images. This solution of embedding the gene expression values into a 2D image considers the overall features of the genes and computes features that are needed in the classification task of the deep learning model by using the convolutional neural network (CNN). When training and testing the 33 cohorts of cancer types in the convolutional neural network, our classification model led to an accuracy of 95.65%. This result is reasonably good when compared with existing works that use multiclass label classification. We also examine the genes based on their significance related to cancer types through the heat map and associate them with biomarkers. Our CNN for the classification task fosters the deep learning framework in the cancer genome analysis and leads to better understanding of complex features in cancer disease.","PeriodicalId":229882,"journal":{"name":"Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

This paper aims to explore the problems associated in solving the classification of cancer in gene expression data using deep learning model. Our proposed solution for the cancer classification of ribonucleic acid sequencing (RNA-seq) extracted from the Pan-Cancer Atlas is to transform the 1-dimensional (1D) gene expression values into 2-dimensional (2D) images. This solution of embedding the gene expression values into a 2D image considers the overall features of the genes and computes features that are needed in the classification task of the deep learning model by using the convolutional neural network (CNN). When training and testing the 33 cohorts of cancer types in the convolutional neural network, our classification model led to an accuracy of 95.65%. This result is reasonably good when compared with existing works that use multiclass label classification. We also examine the genes based on their significance related to cancer types through the heat map and associate them with biomarkers. Our CNN for the classification task fosters the deep learning framework in the cancer genome analysis and leads to better understanding of complex features in cancer disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepGx
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeepGx RiskCast FastestER gl2vec OPTANE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1