A Parallel Meta-Solver for the Multi-Objective Set Covering Problem

Ryan J. Marshall, Lakmali Weerasena, A. Skjellum
{"title":"A Parallel Meta-Solver for the Multi-Objective Set Covering Problem","authors":"Ryan J. Marshall, Lakmali Weerasena, A. Skjellum","doi":"10.1109/IPDPSW52791.2021.00085","DOIUrl":null,"url":null,"abstract":"The multi-objective set covering problem (MOSCP) appears in many different real-world applications. We implemented a meta-solver in C++ that introduces shared-memory concurrency using OpenMP. It incorporates a commonly used Mixed Integer Problem (MIP) solver to find initial solutions with a linear programming (LP) solver that enumerates possible solutions over a tree of subproblems using a local branch approach. Adhering to a finite cutoff value, solutions are ordered as they are passed back up the tree to produce the set of Pareto fronts. In this paper, we present a serial version of the meta-solver with a novel search procedure that outperforms a previous implementation, and when parallelization techniques are applied, a 9-12x speedup is achieved with the possibility of further improvement for large problems.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The multi-objective set covering problem (MOSCP) appears in many different real-world applications. We implemented a meta-solver in C++ that introduces shared-memory concurrency using OpenMP. It incorporates a commonly used Mixed Integer Problem (MIP) solver to find initial solutions with a linear programming (LP) solver that enumerates possible solutions over a tree of subproblems using a local branch approach. Adhering to a finite cutoff value, solutions are ordered as they are passed back up the tree to produce the set of Pareto fronts. In this paper, we present a serial version of the meta-solver with a novel search procedure that outperforms a previous implementation, and when parallelization techniques are applied, a 9-12x speedup is achieved with the possibility of further improvement for large problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标集覆盖问题的并行元求解器
多目标集覆盖问题(MOSCP)出现在许多不同的实际应用中。我们在c++中实现了一个元求解器,它使用OpenMP引入了共享内存并发性。它结合了一个常用的混合整数问题(MIP)求解器和一个线性规划(LP)求解器来寻找初始解,线性规划(LP)求解器使用局部分支方法枚举子问题树上的可能解。坚持一个有限的截止值,解决方案是有序的,因为他们被传递回树,以产生一组帕累托前沿。在本文中,我们提出了一个具有新颖搜索过程的元求解器的串行版本,其性能优于以前的实现,并且当应用并行化技术时,实现了9-12倍的加速,并有可能进一步改进大型问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Division Multiplexing for FPGA Considering CNN Model Switch Time Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators On Data Parallelism Code Restructuring for HLS Targeting FPGAs Improving the MPI-IO Performance of Applications with Genetic Algorithm based Auto-tuning ScaDL 2021 Invited Speaker-3: AI for Social Impact: Results from multiagent reasoning and learning in the real world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1