{"title":"TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems","authors":"Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, L. Sha","doi":"10.1109/RTAS.2016.7461362","DOIUrl":null,"url":null,"abstract":"The high degree of predictability in real-time systems makes it possible for adversaries to launch timing inference attacks such as those based on side-channels and covert-channels. We present TaskShuffler, a schedule obfuscation method aimed at randomizing the schedule for such systems while still providing the real-time guarantees that are necessary for their safe operation. This paper also analyzes the effect of these mechanisms by presenting schedule entropy - a metric to measure the uncertainty (as perceived by attackers) introduced by TaskShuffler. These mechanisms will increase the difficulty for would-be attackers thus improving the overall security guarantees for real-time systems.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
The high degree of predictability in real-time systems makes it possible for adversaries to launch timing inference attacks such as those based on side-channels and covert-channels. We present TaskShuffler, a schedule obfuscation method aimed at randomizing the schedule for such systems while still providing the real-time guarantees that are necessary for their safe operation. This paper also analyzes the effect of these mechanisms by presenting schedule entropy - a metric to measure the uncertainty (as perceived by attackers) introduced by TaskShuffler. These mechanisms will increase the difficulty for would-be attackers thus improving the overall security guarantees for real-time systems.