Vector Control Based Speed and Flux estimation in Switched Reluctance Motor Using ANN Controller

S. Babitha, V. Kulkarni, Jyothi P Koujalagi
{"title":"Vector Control Based Speed and Flux estimation in Switched Reluctance Motor Using ANN Controller","authors":"S. Babitha, V. Kulkarni, Jyothi P Koujalagi","doi":"10.1109/RTEICT46194.2019.9016823","DOIUrl":null,"url":null,"abstract":"A switch reluctance motor (SRM) is individually excited, doubly-salient electric machine having characteristics of torque production due to variable reluctance. A increased activity in the intelligent control methods consisting artificial neural networks (ANN) and fuzzy have made them suitable for SRM applications. This paper presents a study of different controllers for switch reluctance motor. The stator current and flux are estimated using ANN Technique. The ANN controller uses a switching table and vector control method to generate gating signals. MATLAB/Simulink is used for fixed parameters of SRM. The advantages of the ANN model is that no prior knowledge is required (model or equation)","PeriodicalId":269385,"journal":{"name":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT46194.2019.9016823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A switch reluctance motor (SRM) is individually excited, doubly-salient electric machine having characteristics of torque production due to variable reluctance. A increased activity in the intelligent control methods consisting artificial neural networks (ANN) and fuzzy have made them suitable for SRM applications. This paper presents a study of different controllers for switch reluctance motor. The stator current and flux are estimated using ANN Technique. The ANN controller uses a switching table and vector control method to generate gating signals. MATLAB/Simulink is used for fixed parameters of SRM. The advantages of the ANN model is that no prior knowledge is required (model or equation)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ANN控制器的开关磁阻电机速度和磁链矢量控制
开关磁阻电动机(SRM)是一种单独励磁的双凸极电机,由于磁阻变化而具有产生转矩的特性。由人工神经网络(ANN)和模糊控制(fuzzy)组成的智能控制方法日益活跃,使其适合于SRM应用。本文对开关磁阻电机的不同控制器进行了研究。采用人工神经网络技术估计定子电流和磁通。人工神经网络控制器采用开关表和矢量控制方法产生门控信号。采用MATLAB/Simulink进行SRM的参数固定。人工神经网络模型的优点是不需要先验知识(模型或方程)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and analysis of an optical transit network IoT Based Automatic Billing System Using Barcode Scanner by Android Device and Monitoring Unregistered Barcode by RFID Feature Extraction of Intra-Pulse Modulated LPI Waveforms Using STFT Implementation of Smart Movable Road Divider and Ambulance Clearance using IoT Energy Reserve Management in Automobile Airbag Control Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1