{"title":"Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model","authors":"A. Hamoudi, T. Abdulhussein","doi":"10.11648/j.ajpa.20170503.11","DOIUrl":null,"url":null,"abstract":"Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei are supposed to have an inert 16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions P(S) and the Δ3 statistics) are well characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J and isospin T. For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of P(S) and an intermediate behavior between the GOE and the Poisson limits for the Δ3 statistics.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajpa.20170503.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei are supposed to have an inert 16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions P(S) and the Δ3 statistics) are well characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J and isospin T. For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of P(S) and an intermediate behavior between the GOE and the Poisson limits for the Δ3 statistics.