Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision

K. Arras, N. Tomatis
{"title":"Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision","authors":"K. Arras, N. Tomatis","doi":"10.1109/EURBOT.1999.827638","DOIUrl":null,"url":null,"abstract":"The paper discusses mobile robot localization by means of geometric features from a laser range finder and a CCD camera. The features are line segments from the laser scanner and vertical edges from the camera. Emphasis is put on sensor models with a strong physical basis. For both sensors, uncertainties in the calibration and measurement process are adequately modeled and propagated through the feature extractors. This yields observations with their first order covariance estimates which are passed to an extended Kalman filter for fusion and position estimation. Experiments on a real platform show that, opposed to the use of the laser range finder only, the multisensor setup allows the uncertainty to stay bounded in difficult localization situations like long corridors, and contributes to an important reduction of uncertainty, particularly in the orientation. The experiments further demonstrate the applicability of such a multisensor localization system in real time on a fully autonomous robot.","PeriodicalId":364500,"journal":{"name":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1999.827638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

The paper discusses mobile robot localization by means of geometric features from a laser range finder and a CCD camera. The features are line segments from the laser scanner and vertical edges from the camera. Emphasis is put on sensor models with a strong physical basis. For both sensors, uncertainties in the calibration and measurement process are adequately modeled and propagated through the feature extractors. This yields observations with their first order covariance estimates which are passed to an extended Kalman filter for fusion and position estimation. Experiments on a real platform show that, opposed to the use of the laser range finder only, the multisensor setup allows the uncertainty to stay bounded in difficult localization situations like long corridors, and contributes to an important reduction of uncertainty, particularly in the orientation. The experiments further demonstrate the applicability of such a multisensor localization system in real time on a fully autonomous robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用激光测距和单目视觉提高移动机器人定位的鲁棒性和精度
本文讨论了利用激光测距仪和CCD相机的几何特征对移动机器人进行定位。这些特征是来自激光扫描仪的线段和来自相机的垂直边缘。重点放在具有强大物理基础的传感器模型上。对于这两种传感器,校准和测量过程中的不确定性都充分建模并通过特征提取器传播。这产生了带有一阶协方差估计的观测值,这些估计被传递给扩展卡尔曼滤波器进行融合和位置估计。在真实平台上的实验表明,与仅使用激光测距仪相反,多传感器设置允许不确定性在长走廊等困难的定位情况下保持有限,并有助于减少不确定性,特别是在方向上。实验进一步证明了该多传感器定位系统在全自主机器人上的实时适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical decision-theoretic planning for autonomous robotic surveillance Environment modelling in a multi-agent mobile system Learning to acquire and select useful landmarks for route following Motion control of a snakelike robot Development of a visual object localization module for mobile robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1