Distributed Task Offloading for Large-Scale VEC Systems: A Multi-agent Deep Reinforcement Learning Method

Yanfei Lu, Deng Han, Xiaoxuan Wang, Qinghe Gao
{"title":"Distributed Task Offloading for Large-Scale VEC Systems: A Multi-agent Deep Reinforcement Learning Method","authors":"Yanfei Lu, Deng Han, Xiaoxuan Wang, Qinghe Gao","doi":"10.1109/iccsn55126.2022.9817573","DOIUrl":null,"url":null,"abstract":"Vehicular Edge Computing (VEC) is a promising technology to meet the ultra-low delay requirements of many emerging Internet of Vehicles (IoV) resource-intensive tasks. Based on VEC, we propose a distributed intelligent task offloading and workload balance (DIOW) framework. In the framework, the base stations (BSs), mounted with mobile edge computing (MEC) servers, can execute the tasks from task vehicles (TV s). Moreover, the tasks can be transmitted from overloaded BSs to resource-idle BSs. Our optimum design is performed with respect to two types of decision variables: task offloading decisions of TV s and workload balancing decisions of BSs. The objective of DIOW is to minimize the system delay while satisfies the energy consumption constraint of each BS. To obtain the optimum design, the framework adopts a multi -agent deep deterministic policy gradient (MADDPG)-based algorithm. We analyze the effectiveness of the DIOW framework by giving numerical results. Comparisons with existing research schemes demonstrate the advantages of our framework.","PeriodicalId":108888,"journal":{"name":"2022 14th International Conference on Communication Software and Networks (ICCSN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccsn55126.2022.9817573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Edge Computing (VEC) is a promising technology to meet the ultra-low delay requirements of many emerging Internet of Vehicles (IoV) resource-intensive tasks. Based on VEC, we propose a distributed intelligent task offloading and workload balance (DIOW) framework. In the framework, the base stations (BSs), mounted with mobile edge computing (MEC) servers, can execute the tasks from task vehicles (TV s). Moreover, the tasks can be transmitted from overloaded BSs to resource-idle BSs. Our optimum design is performed with respect to two types of decision variables: task offloading decisions of TV s and workload balancing decisions of BSs. The objective of DIOW is to minimize the system delay while satisfies the energy consumption constraint of each BS. To obtain the optimum design, the framework adopts a multi -agent deep deterministic policy gradient (MADDPG)-based algorithm. We analyze the effectiveness of the DIOW framework by giving numerical results. Comparisons with existing research schemes demonstrate the advantages of our framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模VEC系统的分布式任务卸载:多智能体深度强化学习方法
车辆边缘计算(VEC)是一种很有前途的技术,可以满足许多新兴的车联网(IoV)资源密集型任务的超低延迟要求。基于VEC,提出了一种分布式智能任务卸载与工作负载平衡(DIOW)框架。在该框架中,安装了移动边缘计算(MEC)服务器的基站(BSs)可以执行任务车(TV)的任务,并且任务可以从过载的BSs传输到资源空闲的BSs。我们的优化设计是针对两种类型的决策变量进行的:TV的任务卸载决策和BSs的工作负载平衡决策。DIOW的目标是在满足各BS能耗约束的同时使系统时延最小化。为了获得最优设计,该框架采用了基于多智能体深度确定性策略梯度(madpg)的算法。通过数值结果分析了DIOW框架的有效性。与现有研究方案的比较表明了我们的框架的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LFM signal analysis based on synchrosqueezing-Hough transform Trusted Dynamic Threshold Caculation Method in Power IoT Abstractive Text Summarization Using Hybrid Technique of Summarization Hybrid Method Based on Extreme Learning Machine for Fetal Electrocardiogram Extraction Distributed Task Offloading for Large-Scale VEC Systems: A Multi-agent Deep Reinforcement Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1