Machine Learning Based Preemptive Diagnosis of Lung Cancer Using Clinical Data

S. Olatunji, Aisha Alansari, Heba Alkhorasani, Meelaf Alsubaii, Rasha Sakloua, Reem Alzahrani, Yasmeen Alsaleem, Reem A. Alassaf, Mehwash Farooqui, M. I. B. Ahmed
{"title":"Machine Learning Based Preemptive Diagnosis of Lung Cancer Using Clinical Data","authors":"S. Olatunji, Aisha Alansari, Heba Alkhorasani, Meelaf Alsubaii, Rasha Sakloua, Reem Alzahrani, Yasmeen Alsaleem, Reem A. Alassaf, Mehwash Farooqui, M. I. B. Ahmed","doi":"10.1109/CDMA54072.2022.00024","DOIUrl":null,"url":null,"abstract":"Lung cancer is a malignant disease that im-poses serious complications restricting patients from performing daily tasks in the early stages and eventu-ally cause their death. The prevalence of this disease has been highlighted by numerous statistics worldwide. The preemptive diagnosis of individuals with lung can-cer can enhance chances of prevention and treatment. Therefore, the purpose of this study is to predict lung cancer preemptively utilizing simple clinical and demo-graphical features obtained from the “data world” website. The experiment was conducted using Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Logistic Regression (LR) classifiers. To improve models' accuracy, SMOTETomek was employed along with GridsearchCV to tune hyperparameters. The Re-cursive Feature Elimination method was also utilized to find the best feature subset. Results indicated that SVM achieved the best performance with 98.33% recall, 96.72% precision, and an accuracy of 97.27% using 15 attributes.","PeriodicalId":313042,"journal":{"name":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDMA54072.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lung cancer is a malignant disease that im-poses serious complications restricting patients from performing daily tasks in the early stages and eventu-ally cause their death. The prevalence of this disease has been highlighted by numerous statistics worldwide. The preemptive diagnosis of individuals with lung can-cer can enhance chances of prevention and treatment. Therefore, the purpose of this study is to predict lung cancer preemptively utilizing simple clinical and demo-graphical features obtained from the “data world” website. The experiment was conducted using Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Logistic Regression (LR) classifiers. To improve models' accuracy, SMOTETomek was employed along with GridsearchCV to tune hyperparameters. The Re-cursive Feature Elimination method was also utilized to find the best feature subset. Results indicated that SVM achieved the best performance with 98.33% recall, 96.72% precision, and an accuracy of 97.27% using 15 attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的肺癌早期诊断的临床研究
肺癌是一种恶性疾病,它会造成严重的并发症,使患者在早期无法进行日常活动,并最终导致死亡。世界各地的许多统计数字都突出了这种疾病的流行。对肺癌患者的早期诊断可以增加预防和治疗的机会。因此,本研究的目的是利用从“数据世界”网站获得的简单临床和人口统计学特征,对肺癌进行前瞻性预测。实验使用支持向量机(SVM)、k -近邻(K-NN)和逻辑回归(LR)分类器进行。为了提高模型的准确性,SMOTETomek与GridsearchCV一起用于调整超参数。利用递归特征消去法寻找最佳特征子集。结果表明,SVM在15个属性的分类中,查全率为98.33%,查准率为96.72%,准确率为97.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Accuracy Performance of Semantic Segmentation Network with Different Backbones On the Capabilities of Quantum Machine Learning Machine Learning Algorithms for Detection of Noisy/Artifact-Corrupted Epochs of Visual Oddball Paradigm ERP Data Deep Learning for Classifying of White Blood Cancer Machine Learning Based Preemptive Diagnosis of Lung Cancer Using Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1