Poisson statistic and half-quadratic regularization for emission tomography reconstruction algorithm

P. Koulibaly, P. Charbonnier, L. Blanc-Féraud, I. Laurette, J. Darcourt, M. Barlaud
{"title":"Poisson statistic and half-quadratic regularization for emission tomography reconstruction algorithm","authors":"P. Koulibaly, P. Charbonnier, L. Blanc-Féraud, I. Laurette, J. Darcourt, M. Barlaud","doi":"10.1109/ICIP.1996.560997","DOIUrl":null,"url":null,"abstract":"In emission computerized tomography, the use of realistic constraints such as edge-preserving smoothing lead to nonlinear regularisation. Charbonnier et al. (see IEEE Trans. on Image Processing, 1994) used the half-quadratic regularization in order to solve this problem. Applied together with a Gaussian likelihood, it formed the ARTUR algorithm. We propose a new regularized algorithm called MOISE which takes into account the Poisson nature of the statistical noise and uses this half-quadratic regularization. For that reason, MOISE differ from the MAP EM (maximum a posteriori expectation maximization) algorithm developed by P.J. Green (1990) which uses the one step late technique. We tested MOISE and compared it with ARTUR, on numerical simulation and real data. The results show that, despite the slowness of convergence, the half-quadratic regularization can be applied in the case of a Poisson statistic.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In emission computerized tomography, the use of realistic constraints such as edge-preserving smoothing lead to nonlinear regularisation. Charbonnier et al. (see IEEE Trans. on Image Processing, 1994) used the half-quadratic regularization in order to solve this problem. Applied together with a Gaussian likelihood, it formed the ARTUR algorithm. We propose a new regularized algorithm called MOISE which takes into account the Poisson nature of the statistical noise and uses this half-quadratic regularization. For that reason, MOISE differ from the MAP EM (maximum a posteriori expectation maximization) algorithm developed by P.J. Green (1990) which uses the one step late technique. We tested MOISE and compared it with ARTUR, on numerical simulation and real data. The results show that, despite the slowness of convergence, the half-quadratic regularization can be applied in the case of a Poisson statistic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发射层析成像重建的泊松统计和半二次正则化算法
在发射计算机断层扫描中,使用诸如边缘保持平滑等现实约束导致非线性正则化。Charbonnier et al.(参见IEEE Trans。在图像处理,1994)使用半二次正则化,以解决这个问题。与高斯似然算法一起应用,形成了ARTUR算法。我们提出了一种新的正则化算法,称为MOISE,它考虑了统计噪声的泊松性质,并使用了这种半二次正则化。因此,MOISE不同于P.J. Green(1990)开发的MAP EM(最大后验期望最大化)算法,该算法使用一步延迟技术。在数值模拟和实际数据上对MOISE进行了测试,并与ARTUR进行了比较。结果表明,尽管收敛速度较慢,但半二次正则化可以应用于泊松统计量的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting halftones from printed documents using texture analysis Multiresolution mosaic Motion estimation and tracking for urban traffic monitoring On sensor image compression for high pixel rate imaging: pixel parallel and column parallel architectures Border identification of echocardiograms via multiscale edge detection and shape modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1