A novel compressed sensing DOA estimation using difference set codes

Iman Taghavi, M. Sabahi, F. Parvaresh, M. Mivehchy
{"title":"A novel compressed sensing DOA estimation using difference set codes","authors":"Iman Taghavi, M. Sabahi, F. Parvaresh, M. Mivehchy","doi":"10.1109/SPIS.2015.7422330","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of direction-of-arrival (DOA) estimation using a novel spatial sampling scheme based on difference set (DS) codes, called DS-spatial sampling. It is shown that the proposed DS-spatial sampling scheme can be modeled by a deterministic dictionary with minimum coherence. We also develop a low complexity compressed sensing (CS) model for DOA estimation. The proposed methods can reduce the number of array elements as well as the number of receivers. Compared with the conventional DOA estimation algorithm, the proposed sampling and processing method can achieve significantly higher resolution.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of direction-of-arrival (DOA) estimation using a novel spatial sampling scheme based on difference set (DS) codes, called DS-spatial sampling. It is shown that the proposed DS-spatial sampling scheme can be modeled by a deterministic dictionary with minimum coherence. We also develop a low complexity compressed sensing (CS) model for DOA estimation. The proposed methods can reduce the number of array elements as well as the number of receivers. Compared with the conventional DOA estimation algorithm, the proposed sampling and processing method can achieve significantly higher resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于差分集码的压缩感知DOA估计方法
在本文中,我们使用一种新的基于差分集(DS)编码的空间采样方案来解决到达方向(DOA)估计问题,称为DS-空间采样。结果表明,所提出的ds空间采样方案可以用具有最小相干性的确定性字典来建模。我们还开发了一种用于DOA估计的低复杂度压缩感知(CS)模型。所提出的方法可以减少阵列元素的数量和接收器的数量。与传统的DOA估计算法相比,所提出的采样处理方法可以获得更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-friendly visual secret sharing based on random grids An adaptive single image method for super resolution An improved DV-Hop localization algorithm in wireless sensor networks Optimization of the low-cost INS/GPS navigation system using ANFIS for high speed vehicle application A novel compressed sensing DOA estimation using difference set codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1